sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(780))
M = H._module
chi = DirichletCharacter(H, M([546,245]))
pari:[g,chi] = znchar(Mod(1159,4225))
| Modulus: | \(4225\) | |
| Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(780\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(54,\cdot)\)
\(\chi_{4225}(59,\cdot)\)
\(\chi_{4225}(84,\cdot)\)
\(\chi_{4225}(119,\cdot)\)
\(\chi_{4225}(154,\cdot)\)
\(\chi_{4225}(184,\cdot)\)
\(\chi_{4225}(189,\cdot)\)
\(\chi_{4225}(214,\cdot)\)
\(\chi_{4225}(219,\cdot)\)
\(\chi_{4225}(254,\cdot)\)
\(\chi_{4225}(279,\cdot)\)
\(\chi_{4225}(284,\cdot)\)
\(\chi_{4225}(314,\cdot)\)
\(\chi_{4225}(344,\cdot)\)
\(\chi_{4225}(379,\cdot)\)
\(\chi_{4225}(384,\cdot)\)
\(\chi_{4225}(409,\cdot)\)
\(\chi_{4225}(414,\cdot)\)
\(\chi_{4225}(444,\cdot)\)
\(\chi_{4225}(479,\cdot)\)
\(\chi_{4225}(509,\cdot)\)
\(\chi_{4225}(514,\cdot)\)
\(\chi_{4225}(539,\cdot)\)
\(\chi_{4225}(544,\cdot)\)
\(\chi_{4225}(579,\cdot)\)
\(\chi_{4225}(604,\cdot)\)
\(\chi_{4225}(609,\cdot)\)
\(\chi_{4225}(639,\cdot)\)
\(\chi_{4225}(644,\cdot)\)
\(\chi_{4225}(669,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{49}{156}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
| \( \chi_{ 4225 }(1159, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{780}\right)\) | \(e\left(\frac{331}{390}\right)\) | \(e\left(\frac{11}{390}\right)\) | \(e\left(\frac{673}{780}\right)\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{11}{260}\right)\) | \(e\left(\frac{136}{195}\right)\) | \(e\left(\frac{431}{780}\right)\) | \(e\left(\frac{57}{65}\right)\) | \(e\left(\frac{8}{65}\right)\) |
sage:chi.jacobi_sum(n)