sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([39,175]))
pari:[g,chi] = znchar(Mod(1058,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(47,\cdot)\)
\(\chi_{4225}(83,\cdot)\)
\(\chi_{4225}(112,\cdot)\)
\(\chi_{4225}(148,\cdot)\)
\(\chi_{4225}(177,\cdot)\)
\(\chi_{4225}(213,\cdot)\)
\(\chi_{4225}(242,\cdot)\)
\(\chi_{4225}(278,\cdot)\)
\(\chi_{4225}(372,\cdot)\)
\(\chi_{4225}(473,\cdot)\)
\(\chi_{4225}(502,\cdot)\)
\(\chi_{4225}(538,\cdot)\)
\(\chi_{4225}(567,\cdot)\)
\(\chi_{4225}(603,\cdot)\)
\(\chi_{4225}(697,\cdot)\)
\(\chi_{4225}(733,\cdot)\)
\(\chi_{4225}(762,\cdot)\)
\(\chi_{4225}(798,\cdot)\)
\(\chi_{4225}(827,\cdot)\)
\(\chi_{4225}(863,\cdot)\)
\(\chi_{4225}(892,\cdot)\)
\(\chi_{4225}(928,\cdot)\)
\(\chi_{4225}(1022,\cdot)\)
\(\chi_{4225}(1058,\cdot)\)
\(\chi_{4225}(1087,\cdot)\)
\(\chi_{4225}(1123,\cdot)\)
\(\chi_{4225}(1152,\cdot)\)
\(\chi_{4225}(1188,\cdot)\)
\(\chi_{4225}(1217,\cdot)\)
\(\chi_{4225}(1347,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{35}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(1058, a) \) |
\(1\) | \(1\) | \(e\left(\frac{107}{130}\right)\) | \(e\left(\frac{133}{260}\right)\) | \(e\left(\frac{42}{65}\right)\) | \(e\left(\frac{87}{260}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{61}{130}\right)\) | \(e\left(\frac{3}{130}\right)\) | \(e\left(\frac{189}{260}\right)\) | \(e\left(\frac{41}{260}\right)\) | \(e\left(\frac{77}{130}\right)\) |
sage:chi.jacobi_sum(n)