sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([13,80]))
pari:[g,chi] = znchar(Mod(1002,4225))
| Modulus: | \(4225\) | |
| Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(27,\cdot)\)
\(\chi_{4225}(53,\cdot)\)
\(\chi_{4225}(92,\cdot)\)
\(\chi_{4225}(183,\cdot)\)
\(\chi_{4225}(222,\cdot)\)
\(\chi_{4225}(248,\cdot)\)
\(\chi_{4225}(287,\cdot)\)
\(\chi_{4225}(313,\cdot)\)
\(\chi_{4225}(352,\cdot)\)
\(\chi_{4225}(378,\cdot)\)
\(\chi_{4225}(417,\cdot)\)
\(\chi_{4225}(547,\cdot)\)
\(\chi_{4225}(573,\cdot)\)
\(\chi_{4225}(612,\cdot)\)
\(\chi_{4225}(638,\cdot)\)
\(\chi_{4225}(703,\cdot)\)
\(\chi_{4225}(742,\cdot)\)
\(\chi_{4225}(833,\cdot)\)
\(\chi_{4225}(872,\cdot)\)
\(\chi_{4225}(898,\cdot)\)
\(\chi_{4225}(937,\cdot)\)
\(\chi_{4225}(963,\cdot)\)
\(\chi_{4225}(1002,\cdot)\)
\(\chi_{4225}(1028,\cdot)\)
\(\chi_{4225}(1067,\cdot)\)
\(\chi_{4225}(1158,\cdot)\)
\(\chi_{4225}(1197,\cdot)\)
\(\chi_{4225}(1223,\cdot)\)
\(\chi_{4225}(1262,\cdot)\)
\(\chi_{4225}(1288,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{20}\right),e\left(\frac{4}{13}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
| \( \chi_{ 4225 }(1002, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{93}{260}\right)\) | \(e\left(\frac{131}{260}\right)\) | \(e\left(\frac{93}{130}\right)\) | \(e\left(\frac{56}{65}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{19}{260}\right)\) | \(e\left(\frac{1}{130}\right)\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{57}{260}\right)\) | \(e\left(\frac{69}{130}\right)\) |
sage:chi.jacobi_sum(n)