sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(420, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,3,3,5]))
pari:[g,chi] = znchar(Mod(299,420))
Modulus: | \(420\) | |
Conductor: | \(420\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(6\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{420}(59,\cdot)\)
\(\chi_{420}(299,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((211,281,337,241)\) → \((-1,-1,-1,e\left(\frac{5}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 420 }(299, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)