Properties

Label 417.275
Modulus $417$
Conductor $417$
Order $138$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(417, base_ring=CyclotomicField(138)) M = H._module chi = DirichletCharacter(H, M([69,110]))
 
Copy content pari:[g,chi] = znchar(Mod(275,417))
 

Basic properties

Modulus: \(417\)
Conductor: \(417\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(138\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 417.n

\(\chi_{417}(5,\cdot)\) \(\chi_{417}(11,\cdot)\) \(\chi_{417}(20,\cdot)\) \(\chi_{417}(29,\cdot)\) \(\chi_{417}(35,\cdot)\) \(\chi_{417}(38,\cdot)\) \(\chi_{417}(41,\cdot)\) \(\chi_{417}(47,\cdot)\) \(\chi_{417}(71,\cdot)\) \(\chi_{417}(83,\cdot)\) \(\chi_{417}(86,\cdot)\) \(\chi_{417}(89,\cdot)\) \(\chi_{417}(107,\cdot)\) \(\chi_{417}(113,\cdot)\) \(\chi_{417}(122,\cdot)\) \(\chi_{417}(137,\cdot)\) \(\chi_{417}(143,\cdot)\) \(\chi_{417}(146,\cdot)\) \(\chi_{417}(152,\cdot)\) \(\chi_{417}(155,\cdot)\) \(\chi_{417}(164,\cdot)\) \(\chi_{417}(167,\cdot)\) \(\chi_{417}(170,\cdot)\) \(\chi_{417}(176,\cdot)\) \(\chi_{417}(185,\cdot)\) \(\chi_{417}(188,\cdot)\) \(\chi_{417}(206,\cdot)\) \(\chi_{417}(257,\cdot)\) \(\chi_{417}(260,\cdot)\) \(\chi_{417}(263,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{69})$
Fixed field: Number field defined by a degree 138 polynomial (not computed)

Values on generators

\((140,280)\) → \((-1,e\left(\frac{55}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 417 }(275, a) \) \(-1\)\(1\)\(e\left(\frac{41}{138}\right)\)\(e\left(\frac{41}{69}\right)\)\(e\left(\frac{7}{138}\right)\)\(e\left(\frac{59}{69}\right)\)\(e\left(\frac{41}{46}\right)\)\(e\left(\frac{8}{23}\right)\)\(e\left(\frac{11}{138}\right)\)\(e\left(\frac{1}{69}\right)\)\(e\left(\frac{7}{46}\right)\)\(e\left(\frac{13}{69}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 417 }(275,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 417 }(275,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 417 }(275,·),\chi_{ 417 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 417 }(275,·)) \;\) at \(\; a,b = \) e.g. 1,2