Properties

Label 41.36
Modulus $41$
Conductor $41$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(41, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([1]))
 
Copy content pari:[g,chi] = znchar(Mod(36,41))
 

Basic properties

Modulus: \(41\)
Conductor: \(41\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 41.g

\(\chi_{41}(2,\cdot)\) \(\chi_{41}(5,\cdot)\) \(\chi_{41}(8,\cdot)\) \(\chi_{41}(20,\cdot)\) \(\chi_{41}(21,\cdot)\) \(\chi_{41}(33,\cdot)\) \(\chi_{41}(36,\cdot)\) \(\chi_{41}(39,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\(6\) → \(e\left(\frac{1}{20}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 41 }(36, a) \) \(1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(-i\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(-1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 41 }(36,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 41 }(36,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 41 }(36,·),\chi_{ 41 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 41 }(36,·)) \;\) at \(\; a,b = \) e.g. 1,2