sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(407, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([72,85]))
pari:[g,chi] = znchar(Mod(102,407))
| Modulus: | \(407\) | |
| Conductor: | \(407\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{407}(3,\cdot)\)
\(\chi_{407}(4,\cdot)\)
\(\chi_{407}(25,\cdot)\)
\(\chi_{407}(58,\cdot)\)
\(\chi_{407}(102,\cdot)\)
\(\chi_{407}(104,\cdot)\)
\(\chi_{407}(114,\cdot)\)
\(\chi_{407}(115,\cdot)\)
\(\chi_{407}(136,\cdot)\)
\(\chi_{407}(141,\cdot)\)
\(\chi_{407}(152,\cdot)\)
\(\chi_{407}(169,\cdot)\)
\(\chi_{407}(213,\cdot)\)
\(\chi_{407}(225,\cdot)\)
\(\chi_{407}(247,\cdot)\)
\(\chi_{407}(262,\cdot)\)
\(\chi_{407}(280,\cdot)\)
\(\chi_{407}(284,\cdot)\)
\(\chi_{407}(289,\cdot)\)
\(\chi_{407}(300,\cdot)\)
\(\chi_{407}(317,\cdot)\)
\(\chi_{407}(324,\cdot)\)
\(\chi_{407}(361,\cdot)\)
\(\chi_{407}(400,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((112,298)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{17}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 407 }(102, a) \) |
\(1\) | \(1\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)