sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4031, base_ring=CyclotomicField(1932))
M = H._module
chi = DirichletCharacter(H, M([1863,1246]))
pari:[g,chi] = znchar(Mod(1291,4031))
| Modulus: | \(4031\) | |
| Conductor: | \(4031\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1932\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4031}(2,\cdot)\)
\(\chi_{4031}(3,\cdot)\)
\(\chi_{4031}(15,\cdot)\)
\(\chi_{4031}(18,\cdot)\)
\(\chi_{4031}(19,\cdot)\)
\(\chi_{4031}(21,\cdot)\)
\(\chi_{4031}(26,\cdot)\)
\(\chi_{4031}(32,\cdot)\)
\(\chi_{4031}(40,\cdot)\)
\(\chi_{4031}(50,\cdot)\)
\(\chi_{4031}(56,\cdot)\)
\(\chi_{4031}(61,\cdot)\)
\(\chi_{4031}(68,\cdot)\)
\(\chi_{4031}(72,\cdot)\)
\(\chi_{4031}(73,\cdot)\)
\(\chi_{4031}(85,\cdot)\)
\(\chi_{4031}(90,\cdot)\)
\(\chi_{4031}(98,\cdot)\)
\(\chi_{4031}(101,\cdot)\)
\(\chi_{4031}(102,\cdot)\)
\(\chi_{4031}(108,\cdot)\)
\(\chi_{4031}(114,\cdot)\)
\(\chi_{4031}(119,\cdot)\)
\(\chi_{4031}(126,\cdot)\)
\(\chi_{4031}(130,\cdot)\)
\(\chi_{4031}(134,\cdot)\)
\(\chi_{4031}(135,\cdot)\)
\(\chi_{4031}(142,\cdot)\)
\(\chi_{4031}(156,\cdot)\)
\(\chi_{4031}(160,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3337,697)\) → \((e\left(\frac{27}{28}\right),e\left(\frac{89}{138}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 4031 }(1291, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1177}{1932}\right)\) | \(e\left(\frac{509}{1932}\right)\) | \(e\left(\frac{211}{966}\right)\) | \(e\left(\frac{655}{966}\right)\) | \(e\left(\frac{281}{322}\right)\) | \(e\left(\frac{395}{483}\right)\) | \(e\left(\frac{533}{644}\right)\) | \(e\left(\frac{509}{966}\right)\) | \(e\left(\frac{185}{644}\right)\) | \(e\left(\frac{235}{1932}\right)\) |
sage:chi.jacobi_sum(n)