![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([25,14]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([25,14]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(110,403))
        pari:[g,chi] = znchar(Mod(110,403))
         
     
    
  
   | Modulus: | \(403\) |  | 
   | Conductor: | \(403\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(60\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{403}(11,\cdot)\)
  \(\chi_{403}(106,\cdot)\)
  \(\chi_{403}(110,\cdot)\)
  \(\chi_{403}(115,\cdot)\)
  \(\chi_{403}(136,\cdot)\)
  \(\chi_{403}(145,\cdot)\)
  \(\chi_{403}(189,\cdot)\)
  \(\chi_{403}(197,\cdot)\)
  \(\chi_{403}(241,\cdot)\)
  \(\chi_{403}(301,\cdot)\)
  \(\chi_{403}(323,\cdot)\)
  \(\chi_{403}(344,\cdot)\)
  \(\chi_{403}(358,\cdot)\)
  \(\chi_{403}(362,\cdot)\)
  \(\chi_{403}(384,\cdot)\)
  \(\chi_{403}(396,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((249,313)\) → \((e\left(\frac{5}{12}\right),e\left(\frac{7}{30}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | 
    
    
      | \( \chi_{ 403 }(110, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)