sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(399, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,12,7]))
pari:[g,chi] = znchar(Mod(242,399))
| Modulus: | \(399\) | |
| Conductor: | \(399\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(18\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{399}(86,\cdot)\)
\(\chi_{399}(116,\cdot)\)
\(\chi_{399}(242,\cdot)\)
\(\chi_{399}(317,\cdot)\)
\(\chi_{399}(326,\cdot)\)
\(\chi_{399}(338,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((134,115,211)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{7}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(20\) |
| \( \chi_{ 399 }(242, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)