sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3871, base_ring=CyclotomicField(546))
M = H._module
chi = DirichletCharacter(H, M([416,350]))
pari:[g,chi] = znchar(Mod(919,3871))
Modulus: | \(3871\) | |
Conductor: | \(3871\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(273\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3871}(9,\cdot)\)
\(\chi_{3871}(25,\cdot)\)
\(\chi_{3871}(72,\cdot)\)
\(\chi_{3871}(81,\cdot)\)
\(\chi_{3871}(95,\cdot)\)
\(\chi_{3871}(123,\cdot)\)
\(\chi_{3871}(130,\cdot)\)
\(\chi_{3871}(163,\cdot)\)
\(\chi_{3871}(184,\cdot)\)
\(\chi_{3871}(198,\cdot)\)
\(\chi_{3871}(200,\cdot)\)
\(\chi_{3871}(207,\cdot)\)
\(\chi_{3871}(268,\cdot)\)
\(\chi_{3871}(310,\cdot)\)
\(\chi_{3871}(366,\cdot)\)
\(\chi_{3871}(431,\cdot)\)
\(\chi_{3871}(478,\cdot)\)
\(\chi_{3871}(485,\cdot)\)
\(\chi_{3871}(487,\cdot)\)
\(\chi_{3871}(494,\cdot)\)
\(\chi_{3871}(506,\cdot)\)
\(\chi_{3871}(550,\cdot)\)
\(\chi_{3871}(562,\cdot)\)
\(\chi_{3871}(578,\cdot)\)
\(\chi_{3871}(625,\cdot)\)
\(\chi_{3871}(634,\cdot)\)
\(\chi_{3871}(648,\cdot)\)
\(\chi_{3871}(676,\cdot)\)
\(\chi_{3871}(683,\cdot)\)
\(\chi_{3871}(730,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2845,1030)\) → \((e\left(\frac{16}{21}\right),e\left(\frac{25}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 3871 }(919, a) \) |
\(1\) | \(1\) | \(e\left(\frac{34}{91}\right)\) | \(e\left(\frac{110}{273}\right)\) | \(e\left(\frac{68}{91}\right)\) | \(e\left(\frac{229}{273}\right)\) | \(e\left(\frac{212}{273}\right)\) | \(e\left(\frac{11}{91}\right)\) | \(e\left(\frac{220}{273}\right)\) | \(e\left(\frac{58}{273}\right)\) | \(e\left(\frac{6}{91}\right)\) | \(e\left(\frac{41}{273}\right)\) |
sage:chi.jacobi_sum(n)