Properties

Label 373527.286408
Modulus $373527$
Conductor $343$
Order $294$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(373527, base_ring=CyclotomicField(294)) M = H._module chi = DirichletCharacter(H, M([0,1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(286408,373527))
 

Basic properties

Modulus: \(373527\)
Conductor: \(343\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(294\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{343}(3,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 373527.js

\(\chi_{373527}(1090,\cdot)\) \(\chi_{373527}(4357,\cdot)\) \(\chi_{373527}(8713,\cdot)\) \(\chi_{373527}(11980,\cdot)\) \(\chi_{373527}(19603,\cdot)\) \(\chi_{373527}(23959,\cdot)\) \(\chi_{373527}(31582,\cdot)\) \(\chi_{373527}(34849,\cdot)\) \(\chi_{373527}(39205,\cdot)\) \(\chi_{373527}(42472,\cdot)\) \(\chi_{373527}(46828,\cdot)\) \(\chi_{373527}(50095,\cdot)\) \(\chi_{373527}(54451,\cdot)\) \(\chi_{373527}(57718,\cdot)\) \(\chi_{373527}(62074,\cdot)\) \(\chi_{373527}(65341,\cdot)\) \(\chi_{373527}(72964,\cdot)\) \(\chi_{373527}(77320,\cdot)\) \(\chi_{373527}(84943,\cdot)\) \(\chi_{373527}(88210,\cdot)\) \(\chi_{373527}(92566,\cdot)\) \(\chi_{373527}(95833,\cdot)\) \(\chi_{373527}(100189,\cdot)\) \(\chi_{373527}(103456,\cdot)\) \(\chi_{373527}(107812,\cdot)\) \(\chi_{373527}(111079,\cdot)\) \(\chi_{373527}(115435,\cdot)\) \(\chi_{373527}(118702,\cdot)\) \(\chi_{373527}(126325,\cdot)\) \(\chi_{373527}(130681,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{147})$
Fixed field: Number field defined by a degree 294 polynomial (not computed)

Values on generators

\((290522,286408,126568)\) → \((1,e\left(\frac{1}{294}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 373527 }(286408, a) \) \(-1\)\(1\)\(e\left(\frac{97}{147}\right)\)\(e\left(\frac{47}{147}\right)\)\(e\left(\frac{29}{294}\right)\)\(e\left(\frac{48}{49}\right)\)\(e\left(\frac{223}{294}\right)\)\(e\left(\frac{95}{98}\right)\)\(e\left(\frac{94}{147}\right)\)\(e\left(\frac{25}{294}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{41}{98}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 373527 }(286408,a) \;\) at \(\;a = \) e.g. 2