Properties

Label 3724.1035
Modulus $3724$
Conductor $3724$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,81,56]))
 
Copy content pari:[g,chi] = znchar(Mod(1035,3724))
 

Basic properties

Modulus: \(3724\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3724.ek

\(\chi_{3724}(55,\cdot)\) \(\chi_{3724}(111,\cdot)\) \(\chi_{3724}(139,\cdot)\) \(\chi_{3724}(251,\cdot)\) \(\chi_{3724}(503,\cdot)\) \(\chi_{3724}(643,\cdot)\) \(\chi_{3724}(671,\cdot)\) \(\chi_{3724}(727,\cdot)\) \(\chi_{3724}(1035,\cdot)\) \(\chi_{3724}(1119,\cdot)\) \(\chi_{3724}(1203,\cdot)\) \(\chi_{3724}(1259,\cdot)\) \(\chi_{3724}(1315,\cdot)\) \(\chi_{3724}(1651,\cdot)\) \(\chi_{3724}(1707,\cdot)\) \(\chi_{3724}(1735,\cdot)\) \(\chi_{3724}(1791,\cdot)\) \(\chi_{3724}(1847,\cdot)\) \(\chi_{3724}(2099,\cdot)\) \(\chi_{3724}(2183,\cdot)\) \(\chi_{3724}(2239,\cdot)\) \(\chi_{3724}(2267,\cdot)\) \(\chi_{3724}(2323,\cdot)\) \(\chi_{3724}(2379,\cdot)\) \(\chi_{3724}(2631,\cdot)\) \(\chi_{3724}(2715,\cdot)\) \(\chi_{3724}(2771,\cdot)\) \(\chi_{3724}(2799,\cdot)\) \(\chi_{3724}(2855,\cdot)\) \(\chi_{3724}(2911,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3041,3137)\) → \((-1,e\left(\frac{9}{14}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 3724 }(1035, a) \) \(1\)\(1\)\(e\left(\frac{58}{63}\right)\)\(e\left(\frac{95}{126}\right)\)\(e\left(\frac{53}{63}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{55}{126}\right)\)\(e\left(\frac{85}{126}\right)\)\(e\left(\frac{65}{126}\right)\)\(e\left(\frac{103}{126}\right)\)\(e\left(\frac{32}{63}\right)\)\(e\left(\frac{16}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3724 }(1035,a) \;\) at \(\;a = \) e.g. 2