sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(486))
M = H._module
chi = DirichletCharacter(H, M([4,243]))
pari:[g,chi] = znchar(Mod(1474,3645))
| Modulus: | \(3645\) | |
| Conductor: | \(3645\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(486\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3645}(4,\cdot)\)
\(\chi_{3645}(34,\cdot)\)
\(\chi_{3645}(49,\cdot)\)
\(\chi_{3645}(79,\cdot)\)
\(\chi_{3645}(94,\cdot)\)
\(\chi_{3645}(124,\cdot)\)
\(\chi_{3645}(139,\cdot)\)
\(\chi_{3645}(169,\cdot)\)
\(\chi_{3645}(184,\cdot)\)
\(\chi_{3645}(214,\cdot)\)
\(\chi_{3645}(229,\cdot)\)
\(\chi_{3645}(259,\cdot)\)
\(\chi_{3645}(274,\cdot)\)
\(\chi_{3645}(304,\cdot)\)
\(\chi_{3645}(319,\cdot)\)
\(\chi_{3645}(349,\cdot)\)
\(\chi_{3645}(364,\cdot)\)
\(\chi_{3645}(394,\cdot)\)
\(\chi_{3645}(409,\cdot)\)
\(\chi_{3645}(439,\cdot)\)
\(\chi_{3645}(454,\cdot)\)
\(\chi_{3645}(484,\cdot)\)
\(\chi_{3645}(499,\cdot)\)
\(\chi_{3645}(529,\cdot)\)
\(\chi_{3645}(544,\cdot)\)
\(\chi_{3645}(574,\cdot)\)
\(\chi_{3645}(589,\cdot)\)
\(\chi_{3645}(619,\cdot)\)
\(\chi_{3645}(634,\cdot)\)
\(\chi_{3645}(664,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((731,2917)\) → \((e\left(\frac{2}{243}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 3645 }(1474, a) \) |
\(1\) | \(1\) | \(e\left(\frac{247}{486}\right)\) | \(e\left(\frac{4}{243}\right)\) | \(e\left(\frac{361}{486}\right)\) | \(e\left(\frac{85}{162}\right)\) | \(e\left(\frac{80}{243}\right)\) | \(e\left(\frac{113}{486}\right)\) | \(e\left(\frac{61}{243}\right)\) | \(e\left(\frac{8}{243}\right)\) | \(e\left(\frac{125}{162}\right)\) | \(e\left(\frac{50}{81}\right)\) |
sage:chi.jacobi_sum(n)