sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3645, base_ring=CyclotomicField(972))
M = H._module
chi = DirichletCharacter(H, M([88,243]))
pari:[g,chi] = znchar(Mod(1282,3645))
| Modulus: | \(3645\) | |
| Conductor: | \(3645\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(972\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3645}(7,\cdot)\)
\(\chi_{3645}(13,\cdot)\)
\(\chi_{3645}(22,\cdot)\)
\(\chi_{3645}(43,\cdot)\)
\(\chi_{3645}(52,\cdot)\)
\(\chi_{3645}(58,\cdot)\)
\(\chi_{3645}(67,\cdot)\)
\(\chi_{3645}(88,\cdot)\)
\(\chi_{3645}(97,\cdot)\)
\(\chi_{3645}(103,\cdot)\)
\(\chi_{3645}(112,\cdot)\)
\(\chi_{3645}(133,\cdot)\)
\(\chi_{3645}(142,\cdot)\)
\(\chi_{3645}(148,\cdot)\)
\(\chi_{3645}(157,\cdot)\)
\(\chi_{3645}(178,\cdot)\)
\(\chi_{3645}(187,\cdot)\)
\(\chi_{3645}(193,\cdot)\)
\(\chi_{3645}(202,\cdot)\)
\(\chi_{3645}(223,\cdot)\)
\(\chi_{3645}(232,\cdot)\)
\(\chi_{3645}(238,\cdot)\)
\(\chi_{3645}(247,\cdot)\)
\(\chi_{3645}(268,\cdot)\)
\(\chi_{3645}(277,\cdot)\)
\(\chi_{3645}(283,\cdot)\)
\(\chi_{3645}(292,\cdot)\)
\(\chi_{3645}(313,\cdot)\)
\(\chi_{3645}(322,\cdot)\)
\(\chi_{3645}(328,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((731,2917)\) → \((e\left(\frac{22}{243}\right),i)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 3645 }(1282, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{331}{972}\right)\) | \(e\left(\frac{331}{486}\right)\) | \(e\left(\frac{895}{972}\right)\) | \(e\left(\frac{7}{324}\right)\) | \(e\left(\frac{151}{243}\right)\) | \(e\left(\frac{785}{972}\right)\) | \(e\left(\frac{127}{486}\right)\) | \(e\left(\frac{88}{243}\right)\) | \(e\left(\frac{77}{324}\right)\) | \(e\left(\frac{47}{162}\right)\) |
sage:chi.jacobi_sum(n)