sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(1680))
M = H._module
chi = DirichletCharacter(H, M([616,1485]))
pari:[g,chi] = znchar(Mod(1036,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1680\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(3,\cdot)\)
\(\chi_{3503}(12,\cdot)\)
\(\chi_{3503}(17,\cdot)\)
\(\chi_{3503}(21,\cdot)\)
\(\chi_{3503}(24,\cdot)\)
\(\chi_{3503}(34,\cdot)\)
\(\chi_{3503}(43,\cdot)\)
\(\chi_{3503}(55,\cdot)\)
\(\chi_{3503}(74,\cdot)\)
\(\chi_{3503}(75,\cdot)\)
\(\chi_{3503}(79,\cdot)\)
\(\chi_{3503}(84,\cdot)\)
\(\chi_{3503}(86,\cdot)\)
\(\chi_{3503}(96,\cdot)\)
\(\chi_{3503}(110,\cdot)\)
\(\chi_{3503}(136,\cdot)\)
\(\chi_{3503}(137,\cdot)\)
\(\chi_{3503}(146,\cdot)\)
\(\chi_{3503}(158,\cdot)\)
\(\chi_{3503}(167,\cdot)\)
\(\chi_{3503}(168,\cdot)\)
\(\chi_{3503}(172,\cdot)\)
\(\chi_{3503}(179,\cdot)\)
\(\chi_{3503}(189,\cdot)\)
\(\chi_{3503}(197,\cdot)\)
\(\chi_{3503}(199,\cdot)\)
\(\chi_{3503}(203,\cdot)\)
\(\chi_{3503}(207,\cdot)\)
\(\chi_{3503}(220,\cdot)\)
\(\chi_{3503}(229,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{11}{30}\right),e\left(\frac{99}{112}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(1036, a) \) |
\(1\) | \(1\) | \(e\left(\frac{57}{140}\right)\) | \(e\left(\frac{421}{1680}\right)\) | \(e\left(\frac{57}{70}\right)\) | \(e\left(\frac{235}{336}\right)\) | \(e\left(\frac{221}{336}\right)\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{31}{140}\right)\) | \(e\left(\frac{421}{840}\right)\) | \(e\left(\frac{179}{1680}\right)\) | \(e\left(\frac{709}{840}\right)\) |
sage:chi.jacobi_sum(n)