sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(344, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,7,12]))
pari:[g,chi] = znchar(Mod(21,344))
Modulus: | \(344\) | |
Conductor: | \(344\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{344}(21,\cdot)\)
\(\chi_{344}(133,\cdot)\)
\(\chi_{344}(213,\cdot)\)
\(\chi_{344}(269,\cdot)\)
\(\chi_{344}(293,\cdot)\)
\(\chi_{344}(317,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((87,173,89)\) → \((1,-1,e\left(\frac{6}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 344 }(21, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)