sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(64))
M = H._module
chi = DirichletCharacter(H, M([32,1,48]))
pari:[g,chi] = znchar(Mod(1019,3328))
Modulus: | \(3328\) | |
Conductor: | \(3328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(64\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3328}(99,\cdot)\)
\(\chi_{3328}(187,\cdot)\)
\(\chi_{3328}(307,\cdot)\)
\(\chi_{3328}(395,\cdot)\)
\(\chi_{3328}(515,\cdot)\)
\(\chi_{3328}(603,\cdot)\)
\(\chi_{3328}(723,\cdot)\)
\(\chi_{3328}(811,\cdot)\)
\(\chi_{3328}(931,\cdot)\)
\(\chi_{3328}(1019,\cdot)\)
\(\chi_{3328}(1139,\cdot)\)
\(\chi_{3328}(1227,\cdot)\)
\(\chi_{3328}(1347,\cdot)\)
\(\chi_{3328}(1435,\cdot)\)
\(\chi_{3328}(1555,\cdot)\)
\(\chi_{3328}(1643,\cdot)\)
\(\chi_{3328}(1763,\cdot)\)
\(\chi_{3328}(1851,\cdot)\)
\(\chi_{3328}(1971,\cdot)\)
\(\chi_{3328}(2059,\cdot)\)
\(\chi_{3328}(2179,\cdot)\)
\(\chi_{3328}(2267,\cdot)\)
\(\chi_{3328}(2387,\cdot)\)
\(\chi_{3328}(2475,\cdot)\)
\(\chi_{3328}(2595,\cdot)\)
\(\chi_{3328}(2683,\cdot)\)
\(\chi_{3328}(2803,\cdot)\)
\(\chi_{3328}(2891,\cdot)\)
\(\chi_{3328}(3011,\cdot)\)
\(\chi_{3328}(3099,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1535,261,769)\) → \((-1,e\left(\frac{1}{64}\right),-i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 3328 }(1019, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{64}\right)\) | \(e\left(\frac{49}{64}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{5}{64}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{39}{64}\right)\) | \(e\left(\frac{61}{64}\right)\) | \(e\left(\frac{7}{32}\right)\) |
sage:chi.jacobi_sum(n)