sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(325, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([51,35]))
pari:[g,chi] = znchar(Mod(297,325))
Modulus: | \(325\) | |
Conductor: | \(325\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{325}(28,\cdot)\)
\(\chi_{325}(37,\cdot)\)
\(\chi_{325}(58,\cdot)\)
\(\chi_{325}(72,\cdot)\)
\(\chi_{325}(102,\cdot)\)
\(\chi_{325}(123,\cdot)\)
\(\chi_{325}(137,\cdot)\)
\(\chi_{325}(158,\cdot)\)
\(\chi_{325}(167,\cdot)\)
\(\chi_{325}(188,\cdot)\)
\(\chi_{325}(202,\cdot)\)
\(\chi_{325}(223,\cdot)\)
\(\chi_{325}(253,\cdot)\)
\(\chi_{325}(267,\cdot)\)
\(\chi_{325}(288,\cdot)\)
\(\chi_{325}(297,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((27,301)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 325 }(297, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)