Properties

Label 3249.2011
Modulus $3249$
Conductor $3249$
Order $171$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3249, base_ring=CyclotomicField(342))
 
M = H._module
 
chi = DirichletCharacter(H, M([114,22]))
 
pari: [g,chi] = znchar(Mod(2011,3249))
 

Basic properties

Modulus: \(3249\)
Conductor: \(3249\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(171\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3249.cb

\(\chi_{3249}(25,\cdot)\) \(\chi_{3249}(61,\cdot)\) \(\chi_{3249}(112,\cdot)\) \(\chi_{3249}(130,\cdot)\) \(\chi_{3249}(142,\cdot)\) \(\chi_{3249}(157,\cdot)\) \(\chi_{3249}(196,\cdot)\) \(\chi_{3249}(232,\cdot)\) \(\chi_{3249}(283,\cdot)\) \(\chi_{3249}(301,\cdot)\) \(\chi_{3249}(313,\cdot)\) \(\chi_{3249}(328,\cdot)\) \(\chi_{3249}(367,\cdot)\) \(\chi_{3249}(403,\cdot)\) \(\chi_{3249}(454,\cdot)\) \(\chi_{3249}(472,\cdot)\) \(\chi_{3249}(484,\cdot)\) \(\chi_{3249}(499,\cdot)\) \(\chi_{3249}(538,\cdot)\) \(\chi_{3249}(574,\cdot)\) \(\chi_{3249}(625,\cdot)\) \(\chi_{3249}(643,\cdot)\) \(\chi_{3249}(655,\cdot)\) \(\chi_{3249}(670,\cdot)\) \(\chi_{3249}(709,\cdot)\) \(\chi_{3249}(745,\cdot)\) \(\chi_{3249}(796,\cdot)\) \(\chi_{3249}(814,\cdot)\) \(\chi_{3249}(826,\cdot)\) \(\chi_{3249}(841,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{171})$
Fixed field: Number field defined by a degree 171 polynomial (not computed)

Values on generators

\((362,2890)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{11}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 3249 }(2011, a) \) \(1\)\(1\)\(e\left(\frac{68}{171}\right)\)\(e\left(\frac{136}{171}\right)\)\(e\left(\frac{101}{171}\right)\)\(e\left(\frac{56}{57}\right)\)\(e\left(\frac{11}{57}\right)\)\(e\left(\frac{169}{171}\right)\)\(e\left(\frac{17}{19}\right)\)\(e\left(\frac{142}{171}\right)\)\(e\left(\frac{65}{171}\right)\)\(e\left(\frac{101}{171}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3249 }(2011,a) \;\) at \(\;a = \) e.g. 2