sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3168, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([60,15,100,96]))
pari:[g,chi] = znchar(Mod(1499,3168))
Modulus: | \(3168\) | |
Conductor: | \(3168\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3168}(59,\cdot)\)
\(\chi_{3168}(203,\cdot)\)
\(\chi_{3168}(443,\cdot)\)
\(\chi_{3168}(515,\cdot)\)
\(\chi_{3168}(587,\cdot)\)
\(\chi_{3168}(707,\cdot)\)
\(\chi_{3168}(731,\cdot)\)
\(\chi_{3168}(779,\cdot)\)
\(\chi_{3168}(851,\cdot)\)
\(\chi_{3168}(995,\cdot)\)
\(\chi_{3168}(1235,\cdot)\)
\(\chi_{3168}(1307,\cdot)\)
\(\chi_{3168}(1379,\cdot)\)
\(\chi_{3168}(1499,\cdot)\)
\(\chi_{3168}(1523,\cdot)\)
\(\chi_{3168}(1571,\cdot)\)
\(\chi_{3168}(1643,\cdot)\)
\(\chi_{3168}(1787,\cdot)\)
\(\chi_{3168}(2027,\cdot)\)
\(\chi_{3168}(2099,\cdot)\)
\(\chi_{3168}(2171,\cdot)\)
\(\chi_{3168}(2291,\cdot)\)
\(\chi_{3168}(2315,\cdot)\)
\(\chi_{3168}(2363,\cdot)\)
\(\chi_{3168}(2435,\cdot)\)
\(\chi_{3168}(2579,\cdot)\)
\(\chi_{3168}(2819,\cdot)\)
\(\chi_{3168}(2891,\cdot)\)
\(\chi_{3168}(2963,\cdot)\)
\(\chi_{3168}(3083,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((991,1189,353,1729)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{5}{6}\right),e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3168 }(1499, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{120}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{41}{120}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{97}{120}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{40}\right)\) |
sage:chi.jacobi_sum(n)