sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3168, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([0,15,20,12]))
pari:[g,chi] = znchar(Mod(101,3168))
| Modulus: | \(3168\) | |
| Conductor: | \(3168\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3168}(29,\cdot)\)
\(\chi_{3168}(101,\cdot)\)
\(\chi_{3168}(149,\cdot)\)
\(\chi_{3168}(173,\cdot)\)
\(\chi_{3168}(293,\cdot)\)
\(\chi_{3168}(365,\cdot)\)
\(\chi_{3168}(437,\cdot)\)
\(\chi_{3168}(677,\cdot)\)
\(\chi_{3168}(821,\cdot)\)
\(\chi_{3168}(893,\cdot)\)
\(\chi_{3168}(941,\cdot)\)
\(\chi_{3168}(965,\cdot)\)
\(\chi_{3168}(1085,\cdot)\)
\(\chi_{3168}(1157,\cdot)\)
\(\chi_{3168}(1229,\cdot)\)
\(\chi_{3168}(1469,\cdot)\)
\(\chi_{3168}(1613,\cdot)\)
\(\chi_{3168}(1685,\cdot)\)
\(\chi_{3168}(1733,\cdot)\)
\(\chi_{3168}(1757,\cdot)\)
\(\chi_{3168}(1877,\cdot)\)
\(\chi_{3168}(1949,\cdot)\)
\(\chi_{3168}(2021,\cdot)\)
\(\chi_{3168}(2261,\cdot)\)
\(\chi_{3168}(2405,\cdot)\)
\(\chi_{3168}(2477,\cdot)\)
\(\chi_{3168}(2525,\cdot)\)
\(\chi_{3168}(2549,\cdot)\)
\(\chi_{3168}(2669,\cdot)\)
\(\chi_{3168}(2741,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((991,1189,353,1729)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 3168 }(101, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{120}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{37}{120}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{29}{120}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{39}{40}\right)\) |
sage:chi.jacobi_sum(n)