Character group
|
| ||
| Order | = | 64512 |
|
| ||
| Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{168}\) |
|
| ||
| Generators | = | $\chi_{305760}(95551,\cdot)$, $\chi_{305760}(114661,\cdot)$, $\chi_{305760}(101921,\cdot)$, $\chi_{305760}(183457,\cdot)$, $\chi_{305760}(18721,\cdot)$, $\chi_{305760}(211681,\cdot)$ |
First 32 of 64512 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{305760}(1,\cdot)\) | 305760.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{305760}(11,\cdot)\) | 305760.fmx | 168 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{56}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{143}{168}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{168}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{85}{168}\right)\) | \(e\left(\frac{1}{84}\right)\) |
| \(\chi_{305760}(17,\cdot)\) | 305760.eew | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{19}{84}\right)\) |
| \(\chi_{305760}(19,\cdot)\) | 305760.cof | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
| \(\chi_{305760}(23,\cdot)\) | 305760.erg | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{65}{84}\right)\) |
| \(\chi_{305760}(29,\cdot)\) | 305760.fpd | 168 | yes | \(-1\) | \(1\) | \(e\left(\frac{143}{168}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{113}{168}\right)\) | \(1\) | \(e\left(\frac{155}{168}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{103}{168}\right)\) | \(e\left(\frac{9}{14}\right)\) |
| \(\chi_{305760}(31,\cdot)\) | 305760.bkg | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{12}\right)\) |
| \(\chi_{305760}(37,\cdot)\) | 305760.fpw | 168 | no | \(1\) | \(1\) | \(e\left(\frac{31}{168}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{155}{168}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{47}{56}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{19}{168}\right)\) | \(e\left(\frac{13}{42}\right)\) |
| \(\chi_{305760}(41,\cdot)\) | 305760.eel | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(i\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{15}{28}\right)\) |
| \(\chi_{305760}(43,\cdot)\) | 305760.fua | 168 | no | \(1\) | \(1\) | \(e\left(\frac{85}{168}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{103}{168}\right)\) | \(1\) | \(e\left(\frac{19}{168}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{11}{168}\right)\) | \(e\left(\frac{27}{28}\right)\) |
| \(\chi_{305760}(47,\cdot)\) | 305760.exn | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{25}{42}\right)\) |
| \(\chi_{305760}(53,\cdot)\) | 305760.frd | 168 | no | \(1\) | \(1\) | \(e\left(\frac{25}{168}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{9}{56}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{167}{168}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{45}{56}\right)\) | \(e\left(\frac{79}{84}\right)\) |
| \(\chi_{305760}(59,\cdot)\) | 305760.gdk | 168 | yes | \(1\) | \(1\) | \(e\left(\frac{71}{168}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{19}{168}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{53}{56}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{53}{168}\right)\) | \(e\left(\frac{25}{84}\right)\) |
| \(\chi_{305760}(61,\cdot)\) | 305760.gck | 168 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{56}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{85}{168}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{71}{168}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{131}{168}\right)\) | \(e\left(\frac{17}{21}\right)\) |
| \(\chi_{305760}(67,\cdot)\) | 305760.csr | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{305760}(71,\cdot)\) | 305760.eim | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(i\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) |
| \(\chi_{305760}(73,\cdot)\) | 305760.ehu | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{19}{21}\right)\) |
| \(\chi_{305760}(79,\cdot)\) | 305760.oh | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{305760}(83,\cdot)\) | 305760.dyo | 56 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{56}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{27}{56}\right)\) | \(-i\) | \(e\left(\frac{41}{56}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{4}{7}\right)\) |
| \(\chi_{305760}(89,\cdot)\) | 305760.edw | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{41}{84}\right)\) |
| \(\chi_{305760}(97,\cdot)\) | 305760.bvb | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) |
| \(\chi_{305760}(101,\cdot)\) | 305760.fmj | 168 | no | \(1\) | \(1\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{107}{168}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{121}{168}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{73}{168}\right)\) | \(e\left(\frac{13}{21}\right)\) |
| \(\chi_{305760}(103,\cdot)\) | 305760.etx | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{17}{84}\right)\) |
| \(\chi_{305760}(107,\cdot)\) | 305760.fyw | 168 | yes | \(-1\) | \(1\) | \(e\left(\frac{61}{168}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{11}{168}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{56}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{55}{168}\right)\) | \(e\left(\frac{83}{84}\right)\) |
| \(\chi_{305760}(109,\cdot)\) | 305760.fms | 168 | no | \(-1\) | \(1\) | \(e\left(\frac{121}{168}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{43}{56}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{168}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{56}\right)\) | \(e\left(\frac{1}{84}\right)\) |
| \(\chi_{305760}(113,\cdot)\) | 305760.feg | 84 | no | \(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) |
| \(\chi_{305760}(121,\cdot)\) | 305760.ezc | 84 | no | \(1\) | \(1\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(i\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) |
| \(\chi_{305760}(127,\cdot)\) | 305760.fgc | 84 | no | \(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(1\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{11}{28}\right)\) |
| \(\chi_{305760}(131,\cdot)\) | 305760.fme | 168 | no | \(-1\) | \(1\) | \(e\left(\frac{155}{168}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{11}{56}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{103}{168}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{13}{56}\right)\) | \(e\left(\frac{8}{21}\right)\) |
| \(\chi_{305760}(137,\cdot)\) | 305760.fex | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) |
| \(\chi_{305760}(139,\cdot)\) | 305760.fpa | 168 | no | \(1\) | \(1\) | \(e\left(\frac{97}{168}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{163}{168}\right)\) | \(1\) | \(e\left(\frac{37}{168}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{101}{168}\right)\) | \(e\left(\frac{2}{7}\right)\) |
| \(\chi_{305760}(149,\cdot)\) | 305760.gbb | 168 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{56}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{31}{168}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{143}{168}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{29}{168}\right)\) | \(e\left(\frac{71}{84}\right)\) |