sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2952, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,6,2,9]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(173,2952))
         
     
    
  
   | Modulus: |  \(2952\) |   |  
   | Conductor: |  \(2952\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(12\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{2952}(173,\cdot)\)
  \(\chi_{2952}(893,\cdot)\)
  \(\chi_{2952}(1157,\cdot)\)
  \(\chi_{2952}(1877,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((2215,1477,2297,1441)\) → \((1,-1,e\left(\frac{1}{6}\right),-i)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |       
    
    
      | \( \chi_{ 2952 }(173, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)