sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2952, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,30,40,27]))
pari:[g,chi] = znchar(Mod(115,2952))
| Modulus: | \(2952\) | |
| Conductor: | \(2952\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2952}(43,\cdot)\)
\(\chi_{2952}(115,\cdot)\)
\(\chi_{2952}(787,\cdot)\)
\(\chi_{2952}(859,\cdot)\)
\(\chi_{2952}(907,\cdot)\)
\(\chi_{2952}(979,\cdot)\)
\(\chi_{2952}(1291,\cdot)\)
\(\chi_{2952}(1579,\cdot)\)
\(\chi_{2952}(1771,\cdot)\)
\(\chi_{2952}(1843,\cdot)\)
\(\chi_{2952}(2011,\cdot)\)
\(\chi_{2952}(2083,\cdot)\)
\(\chi_{2952}(2275,\cdot)\)
\(\chi_{2952}(2563,\cdot)\)
\(\chi_{2952}(2875,\cdot)\)
\(\chi_{2952}(2947,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2215,1477,2297,1441)\) → \((-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{9}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 2952 }(115, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) |
sage:chi.jacobi_sum(n)