![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(289, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([29]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(289, base_ring=CyclotomicField(34))
M = H._module
chi = DirichletCharacter(H, M([29]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(135,289))
        pari:[g,chi] = znchar(Mod(135,289))
         
     
    
  
   | Modulus: | \(289\) |  | 
   | Conductor: | \(289\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(34\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{289}(16,\cdot)\)
  \(\chi_{289}(33,\cdot)\)
  \(\chi_{289}(50,\cdot)\)
  \(\chi_{289}(67,\cdot)\)
  \(\chi_{289}(84,\cdot)\)
  \(\chi_{289}(101,\cdot)\)
  \(\chi_{289}(118,\cdot)\)
  \(\chi_{289}(135,\cdot)\)
  \(\chi_{289}(152,\cdot)\)
  \(\chi_{289}(169,\cdot)\)
  \(\chi_{289}(186,\cdot)\)
  \(\chi_{289}(203,\cdot)\)
  \(\chi_{289}(220,\cdot)\)
  \(\chi_{289}(237,\cdot)\)
  \(\chi_{289}(254,\cdot)\)
  \(\chi_{289}(271,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(3\) → \(e\left(\frac{29}{34}\right)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | 
    
    
      | \( \chi_{ 289 }(135, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{21}{34}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)