Properties

Label 289.123
Modulus $289$
Conductor $289$
Order $68$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([43]))
 
Copy content pari:[g,chi] = znchar(Mod(123,289))
 

Basic properties

Modulus: \(289\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 289.h

\(\chi_{289}(4,\cdot)\) \(\chi_{289}(13,\cdot)\) \(\chi_{289}(21,\cdot)\) \(\chi_{289}(30,\cdot)\) \(\chi_{289}(47,\cdot)\) \(\chi_{289}(55,\cdot)\) \(\chi_{289}(64,\cdot)\) \(\chi_{289}(72,\cdot)\) \(\chi_{289}(81,\cdot)\) \(\chi_{289}(89,\cdot)\) \(\chi_{289}(98,\cdot)\) \(\chi_{289}(106,\cdot)\) \(\chi_{289}(115,\cdot)\) \(\chi_{289}(123,\cdot)\) \(\chi_{289}(132,\cdot)\) \(\chi_{289}(140,\cdot)\) \(\chi_{289}(149,\cdot)\) \(\chi_{289}(157,\cdot)\) \(\chi_{289}(166,\cdot)\) \(\chi_{289}(174,\cdot)\) \(\chi_{289}(183,\cdot)\) \(\chi_{289}(191,\cdot)\) \(\chi_{289}(200,\cdot)\) \(\chi_{289}(208,\cdot)\) \(\chi_{289}(217,\cdot)\) \(\chi_{289}(225,\cdot)\) \(\chi_{289}(234,\cdot)\) \(\chi_{289}(242,\cdot)\) \(\chi_{289}(259,\cdot)\) \(\chi_{289}(268,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\(3\) → \(e\left(\frac{43}{68}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 289 }(123, a) \) \(1\)\(1\)\(e\left(\frac{5}{34}\right)\)\(e\left(\frac{43}{68}\right)\)\(e\left(\frac{5}{17}\right)\)\(e\left(\frac{55}{68}\right)\)\(e\left(\frac{53}{68}\right)\)\(e\left(\frac{1}{68}\right)\)\(e\left(\frac{15}{34}\right)\)\(e\left(\frac{9}{34}\right)\)\(e\left(\frac{65}{68}\right)\)\(e\left(\frac{37}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 289 }(123,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 289 }(123,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 289 }(123,·),\chi_{ 289 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 289 }(123,·)) \;\) at \(\; a,b = \) e.g. 1,2