sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(279, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,14]))
pari:[g,chi] = znchar(Mod(103,279))
| Modulus: | \(279\) | |
| Conductor: | \(279\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(15\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{279}(7,\cdot)\)
\(\chi_{279}(40,\cdot)\)
\(\chi_{279}(49,\cdot)\)
\(\chi_{279}(103,\cdot)\)
\(\chi_{279}(169,\cdot)\)
\(\chi_{279}(175,\cdot)\)
\(\chi_{279}(205,\cdot)\)
\(\chi_{279}(214,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((218,127)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{7}{15}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 279 }(103, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)