Properties

Label 275.261
Modulus $275$
Conductor $275$
Order $10$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([8,3]))
 
Copy content pari:[g,chi] = znchar(Mod(261,275))
 

Basic properties

Modulus: \(275\)
Conductor: \(275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 275.bc

\(\chi_{275}(6,\cdot)\) \(\chi_{275}(46,\cdot)\) \(\chi_{275}(216,\cdot)\) \(\chi_{275}(261,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.0.359794264373779296875.3

Values on generators

\((177,101)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 275 }(261, a) \) \(-1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(1\)\(e\left(\frac{1}{5}\right)\)\(-1\)\(e\left(\frac{1}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 275 }(261,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 275 }(261,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 275 }(261,·),\chi_{ 275 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 275 }(261,·)) \;\) at \(\; a,b = \) e.g. 1,2