sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2668, base_ring=CyclotomicField(308))
M = H._module
chi = DirichletCharacter(H, M([154,28,187]))
pari:[g,chi] = znchar(Mod(1819,2668))
Modulus: | \(2668\) | |
Conductor: | \(2668\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(308\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2668}(3,\cdot)\)
\(\chi_{2668}(27,\cdot)\)
\(\chi_{2668}(31,\cdot)\)
\(\chi_{2668}(39,\cdot)\)
\(\chi_{2668}(55,\cdot)\)
\(\chi_{2668}(95,\cdot)\)
\(\chi_{2668}(119,\cdot)\)
\(\chi_{2668}(127,\cdot)\)
\(\chi_{2668}(131,\cdot)\)
\(\chi_{2668}(147,\cdot)\)
\(\chi_{2668}(163,\cdot)\)
\(\chi_{2668}(211,\cdot)\)
\(\chi_{2668}(243,\cdot)\)
\(\chi_{2668}(259,\cdot)\)
\(\chi_{2668}(271,\cdot)\)
\(\chi_{2668}(279,\cdot)\)
\(\chi_{2668}(311,\cdot)\)
\(\chi_{2668}(351,\cdot)\)
\(\chi_{2668}(363,\cdot)\)
\(\chi_{2668}(395,\cdot)\)
\(\chi_{2668}(403,\cdot)\)
\(\chi_{2668}(427,\cdot)\)
\(\chi_{2668}(443,\cdot)\)
\(\chi_{2668}(491,\cdot)\)
\(\chi_{2668}(495,\cdot)\)
\(\chi_{2668}(519,\cdot)\)
\(\chi_{2668}(583,\cdot)\)
\(\chi_{2668}(591,\cdot)\)
\(\chi_{2668}(607,\cdot)\)
\(\chi_{2668}(611,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1335,465,553)\) → \((-1,e\left(\frac{1}{11}\right),e\left(\frac{17}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 2668 }(1819, a) \) |
\(1\) | \(1\) | \(e\left(\frac{305}{308}\right)\) | \(e\left(\frac{69}{154}\right)\) | \(e\left(\frac{79}{154}\right)\) | \(e\left(\frac{151}{154}\right)\) | \(e\left(\frac{153}{308}\right)\) | \(e\left(\frac{31}{154}\right)\) | \(e\left(\frac{135}{308}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{101}{308}\right)\) | \(e\left(\frac{155}{308}\right)\) |
sage:chi.jacobi_sum(n)