Properties

Label 2668.1739
Modulus $2668$
Conductor $2668$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2668, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,21,11]))
 
Copy content pari:[g,chi] = znchar(Mod(1739,2668))
 

Basic properties

Modulus: \(2668\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2668.w

\(\chi_{2668}(695,\cdot)\) \(\chi_{2668}(927,\cdot)\) \(\chi_{2668}(1275,\cdot)\) \(\chi_{2668}(1391,\cdot)\) \(\chi_{2668}(1739,\cdot)\) \(\chi_{2668}(1855,\cdot)\) \(\chi_{2668}(2087,\cdot)\) \(\chi_{2668}(2319,\cdot)\) \(\chi_{2668}(2435,\cdot)\) \(\chi_{2668}(2551,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((1335,465,553)\) → \((-1,e\left(\frac{21}{22}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2668 }(1739, a) \) \(1\)\(1\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{10}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2668 }(1739,a) \;\) at \(\;a = \) e.g. 2