Properties

Label 2667.125
Modulus $2667$
Conductor $2667$
Order $14$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2667, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,7,1]))
 
pari: [g,chi] = znchar(Mod(125,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(2667\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2667.by

\(\chi_{2667}(125,\cdot)\) \(\chi_{2667}(377,\cdot)\) \(\chi_{2667}(881,\cdot)\) \(\chi_{2667}(1238,\cdot)\) \(\chi_{2667}(1889,\cdot)\) \(\chi_{2667}(2603,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((890,1144,2416)\) → \((-1,-1,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(125, a) \) \(-1\)\(1\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(125,a) \;\) at \(\;a = \) e.g. 2