from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,1]))
pari: [g,chi] = znchar(Mod(125,2667))
Basic properties
Modulus: | \(2667\) | |
Conductor: | \(2667\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2667.by
\(\chi_{2667}(125,\cdot)\) \(\chi_{2667}(377,\cdot)\) \(\chi_{2667}(881,\cdot)\) \(\chi_{2667}(1238,\cdot)\) \(\chi_{2667}(1889,\cdot)\) \(\chi_{2667}(2603,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | Number field defined by a degree 14 polynomial |
Values on generators
\((890,1144,2416)\) → \((-1,-1,e\left(\frac{1}{14}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(125, a) \) | \(-1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)