sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,84,5]))
pari:[g,chi] = znchar(Mod(116,2667))
| Modulus: | \(2667\) | |
| Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(23,\cdot)\)
\(\chi_{2667}(53,\cdot)\)
\(\chi_{2667}(65,\cdot)\)
\(\chi_{2667}(116,\cdot)\)
\(\chi_{2667}(347,\cdot)\)
\(\chi_{2667}(410,\cdot)\)
\(\chi_{2667}(599,\cdot)\)
\(\chi_{2667}(863,\cdot)\)
\(\chi_{2667}(872,\cdot)\)
\(\chi_{2667}(998,\cdot)\)
\(\chi_{2667}(1061,\cdot)\)
\(\chi_{2667}(1073,\cdot)\)
\(\chi_{2667}(1157,\cdot)\)
\(\chi_{2667}(1199,\cdot)\)
\(\chi_{2667}(1229,\cdot)\)
\(\chi_{2667}(1313,\cdot)\)
\(\chi_{2667}(1355,\cdot)\)
\(\chi_{2667}(1367,\cdot)\)
\(\chi_{2667}(1376,\cdot)\)
\(\chi_{2667}(1409,\cdot)\)
\(\chi_{2667}(1493,\cdot)\)
\(\chi_{2667}(1607,\cdot)\)
\(\chi_{2667}(1817,\cdot)\)
\(\chi_{2667}(1892,\cdot)\)
\(\chi_{2667}(1997,\cdot)\)
\(\chi_{2667}(2039,\cdot)\)
\(\chi_{2667}(2090,\cdot)\)
\(\chi_{2667}(2144,\cdot)\)
\(\chi_{2667}(2165,\cdot)\)
\(\chi_{2667}(2207,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{126}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 2667 }(116, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)