Properties

Label 2667.116
Modulus $2667$
Conductor $2667$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,84,5]))
 
Copy content pari:[g,chi] = znchar(Mod(116,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(2667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.eg

\(\chi_{2667}(23,\cdot)\) \(\chi_{2667}(53,\cdot)\) \(\chi_{2667}(65,\cdot)\) \(\chi_{2667}(116,\cdot)\) \(\chi_{2667}(347,\cdot)\) \(\chi_{2667}(410,\cdot)\) \(\chi_{2667}(599,\cdot)\) \(\chi_{2667}(863,\cdot)\) \(\chi_{2667}(872,\cdot)\) \(\chi_{2667}(998,\cdot)\) \(\chi_{2667}(1061,\cdot)\) \(\chi_{2667}(1073,\cdot)\) \(\chi_{2667}(1157,\cdot)\) \(\chi_{2667}(1199,\cdot)\) \(\chi_{2667}(1229,\cdot)\) \(\chi_{2667}(1313,\cdot)\) \(\chi_{2667}(1355,\cdot)\) \(\chi_{2667}(1367,\cdot)\) \(\chi_{2667}(1376,\cdot)\) \(\chi_{2667}(1409,\cdot)\) \(\chi_{2667}(1493,\cdot)\) \(\chi_{2667}(1607,\cdot)\) \(\chi_{2667}(1817,\cdot)\) \(\chi_{2667}(1892,\cdot)\) \(\chi_{2667}(1997,\cdot)\) \(\chi_{2667}(2039,\cdot)\) \(\chi_{2667}(2090,\cdot)\) \(\chi_{2667}(2144,\cdot)\) \(\chi_{2667}(2165,\cdot)\) \(\chi_{2667}(2207,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((890,1144,2416)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{126}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(116, a) \) \(1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{109}{126}\right)\)\(e\left(\frac{46}{63}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{85}{126}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(116,a) \;\) at \(\;a = \) e.g. 2