Properties

Label 2667.1109
Modulus $2667$
Conductor $2667$
Order $126$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,21,47]))
 
Copy content pari:[g,chi] = znchar(Mod(1109,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(2667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.en

\(\chi_{2667}(173,\cdot)\) \(\chi_{2667}(185,\cdot)\) \(\chi_{2667}(194,\cdot)\) \(\chi_{2667}(257,\cdot)\) \(\chi_{2667}(332,\cdot)\) \(\chi_{2667}(404,\cdot)\) \(\chi_{2667}(446,\cdot)\) \(\chi_{2667}(563,\cdot)\) \(\chi_{2667}(626,\cdot)\) \(\chi_{2667}(815,\cdot)\) \(\chi_{2667}(878,\cdot)\) \(\chi_{2667}(1109,\cdot)\) \(\chi_{2667}(1172,\cdot)\) \(\chi_{2667}(1244,\cdot)\) \(\chi_{2667}(1361,\cdot)\) \(\chi_{2667}(1454,\cdot)\) \(\chi_{2667}(1538,\cdot)\) \(\chi_{2667}(1580,\cdot)\) \(\chi_{2667}(1634,\cdot)\) \(\chi_{2667}(1748,\cdot)\) \(\chi_{2667}(1760,\cdot)\) \(\chi_{2667}(1790,\cdot)\) \(\chi_{2667}(1823,\cdot)\) \(\chi_{2667}(1874,\cdot)\) \(\chi_{2667}(1991,\cdot)\) \(\chi_{2667}(2075,\cdot)\) \(\chi_{2667}(2117,\cdot)\) \(\chi_{2667}(2138,\cdot)\) \(\chi_{2667}(2273,\cdot)\) \(\chi_{2667}(2369,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((890,1144,2416)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{47}{126}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(1109, a) \) \(-1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{67}{126}\right)\)\(e\left(\frac{71}{126}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{53}{63}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(1109,a) \;\) at \(\;a = \) e.g. 2