sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,21,47]))
pari:[g,chi] = znchar(Mod(1109,2667))
Modulus: | \(2667\) | |
Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(173,\cdot)\)
\(\chi_{2667}(185,\cdot)\)
\(\chi_{2667}(194,\cdot)\)
\(\chi_{2667}(257,\cdot)\)
\(\chi_{2667}(332,\cdot)\)
\(\chi_{2667}(404,\cdot)\)
\(\chi_{2667}(446,\cdot)\)
\(\chi_{2667}(563,\cdot)\)
\(\chi_{2667}(626,\cdot)\)
\(\chi_{2667}(815,\cdot)\)
\(\chi_{2667}(878,\cdot)\)
\(\chi_{2667}(1109,\cdot)\)
\(\chi_{2667}(1172,\cdot)\)
\(\chi_{2667}(1244,\cdot)\)
\(\chi_{2667}(1361,\cdot)\)
\(\chi_{2667}(1454,\cdot)\)
\(\chi_{2667}(1538,\cdot)\)
\(\chi_{2667}(1580,\cdot)\)
\(\chi_{2667}(1634,\cdot)\)
\(\chi_{2667}(1748,\cdot)\)
\(\chi_{2667}(1760,\cdot)\)
\(\chi_{2667}(1790,\cdot)\)
\(\chi_{2667}(1823,\cdot)\)
\(\chi_{2667}(1874,\cdot)\)
\(\chi_{2667}(1991,\cdot)\)
\(\chi_{2667}(2075,\cdot)\)
\(\chi_{2667}(2117,\cdot)\)
\(\chi_{2667}(2138,\cdot)\)
\(\chi_{2667}(2273,\cdot)\)
\(\chi_{2667}(2369,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{47}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(1109, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)