sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2667, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,105,101]))
pari:[g,chi] = znchar(Mod(110,2667))
Modulus: | \(2667\) | |
Conductor: | \(2667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2667}(101,\cdot)\)
\(\chi_{2667}(110,\cdot)\)
\(\chi_{2667}(236,\cdot)\)
\(\chi_{2667}(299,\cdot)\)
\(\chi_{2667}(311,\cdot)\)
\(\chi_{2667}(395,\cdot)\)
\(\chi_{2667}(437,\cdot)\)
\(\chi_{2667}(467,\cdot)\)
\(\chi_{2667}(551,\cdot)\)
\(\chi_{2667}(593,\cdot)\)
\(\chi_{2667}(605,\cdot)\)
\(\chi_{2667}(614,\cdot)\)
\(\chi_{2667}(647,\cdot)\)
\(\chi_{2667}(731,\cdot)\)
\(\chi_{2667}(845,\cdot)\)
\(\chi_{2667}(1055,\cdot)\)
\(\chi_{2667}(1130,\cdot)\)
\(\chi_{2667}(1235,\cdot)\)
\(\chi_{2667}(1277,\cdot)\)
\(\chi_{2667}(1328,\cdot)\)
\(\chi_{2667}(1382,\cdot)\)
\(\chi_{2667}(1403,\cdot)\)
\(\chi_{2667}(1445,\cdot)\)
\(\chi_{2667}(1475,\cdot)\)
\(\chi_{2667}(1697,\cdot)\)
\(\chi_{2667}(1706,\cdot)\)
\(\chi_{2667}(1718,\cdot)\)
\(\chi_{2667}(1769,\cdot)\)
\(\chi_{2667}(1781,\cdot)\)
\(\chi_{2667}(1928,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((890,1144,2416)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{101}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 2667 }(110, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)