sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(254144, base_ring=CyclotomicField(13680))
M = H._module
chi = DirichletCharacter(H, M([0,2565,8208,11120]))
pari:[g,chi] = znchar(Mod(238269,254144))
| Modulus: | \(254144\) | |
| Conductor: | \(254144\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(13680\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{254144}(5,\cdot)\)
\(\chi_{254144}(93,\cdot)\)
\(\chi_{254144}(157,\cdot)\)
\(\chi_{254144}(213,\cdot)\)
\(\chi_{254144}(301,\cdot)\)
\(\chi_{254144}(405,\cdot)\)
\(\chi_{254144}(669,\cdot)\)
\(\chi_{254144}(709,\cdot)\)
\(\chi_{254144}(757,\cdot)\)
\(\chi_{254144}(845,\cdot)\)
\(\chi_{254144}(861,\cdot)\)
\(\chi_{254144}(917,\cdot)\)
\(\chi_{254144}(973,\cdot)\)
\(\chi_{254144}(1005,\cdot)\)
\(\chi_{254144}(1061,\cdot)\)
\(\chi_{254144}(1125,\cdot)\)
\(\chi_{254144}(1149,\cdot)\)
\(\chi_{254144}(1213,\cdot)\)
\(\chi_{254144}(1301,\cdot)\)
\(\chi_{254144}(1373,\cdot)\)
\(\chi_{254144}(1461,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,69313,14081)\) → \((1,e\left(\frac{3}{16}\right),e\left(\frac{3}{5}\right),e\left(\frac{139}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 254144 }(238269, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4799}{13680}\right)\) | \(e\left(\frac{2357}{13680}\right)\) | \(e\left(\frac{11}{2280}\right)\) | \(e\left(\frac{4799}{6840}\right)\) | \(e\left(\frac{11563}{13680}\right)\) | \(e\left(\frac{1789}{3420}\right)\) | \(e\left(\frac{1223}{3420}\right)\) | \(e\left(\frac{973}{2736}\right)\) | \(e\left(\frac{415}{1368}\right)\) | \(e\left(\frac{2357}{6840}\right)\) |
sage:chi.jacobi_sum(n)