Properties

Modulus $254144$
Structure \(C_{2}\times C_{2}\times C_{2}\times C_{13680}\)
Order $109440$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(254144)
 
Copy content pari:g = idealstar(,254144,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 109440
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{2}\times C_{13680}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{254144}(166783,\cdot)$, $\chi_{254144}(174725,\cdot)$, $\chi_{254144}(69313,\cdot)$, $\chi_{254144}(14081,\cdot)$

First 32 of 109440 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(13\) \(15\) \(17\) \(21\) \(23\) \(25\)
\(\chi_{254144}(1,\cdot)\) 254144.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{254144}(3,\cdot)\) 254144.si 13680 yes \(1\) \(1\) \(e\left(\frac{13087}{13680}\right)\) \(e\left(\frac{9301}{13680}\right)\) \(e\left(\frac{2143}{2280}\right)\) \(e\left(\frac{6247}{6840}\right)\) \(e\left(\frac{4499}{13680}\right)\) \(e\left(\frac{2177}{3420}\right)\) \(e\left(\frac{1039}{3420}\right)\) \(e\left(\frac{2453}{2736}\right)\) \(e\left(\frac{635}{1368}\right)\) \(e\left(\frac{2461}{6840}\right)\)
\(\chi_{254144}(5,\cdot)\) 254144.sl 13680 yes \(1\) \(1\) \(e\left(\frac{9301}{13680}\right)\) \(e\left(\frac{583}{13680}\right)\) \(e\left(\frac{409}{2280}\right)\) \(e\left(\frac{2461}{6840}\right)\) \(e\left(\frac{7097}{13680}\right)\) \(e\left(\frac{2471}{3420}\right)\) \(e\left(\frac{2257}{3420}\right)\) \(e\left(\frac{2351}{2736}\right)\) \(e\left(\frac{1253}{1368}\right)\) \(e\left(\frac{583}{6840}\right)\)
\(\chi_{254144}(7,\cdot)\) 254144.qq 2280 no \(1\) \(1\) \(e\left(\frac{2143}{2280}\right)\) \(e\left(\frac{409}{2280}\right)\) \(e\left(\frac{167}{380}\right)\) \(e\left(\frac{1003}{1140}\right)\) \(e\left(\frac{851}{2280}\right)\) \(e\left(\frac{34}{285}\right)\) \(e\left(\frac{263}{285}\right)\) \(e\left(\frac{173}{456}\right)\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{409}{1140}\right)\)
\(\chi_{254144}(9,\cdot)\) 254144.ry 6840 no \(1\) \(1\) \(e\left(\frac{6247}{6840}\right)\) \(e\left(\frac{2461}{6840}\right)\) \(e\left(\frac{1003}{1140}\right)\) \(e\left(\frac{2827}{3420}\right)\) \(e\left(\frac{4499}{6840}\right)\) \(e\left(\frac{467}{1710}\right)\) \(e\left(\frac{1039}{1710}\right)\) \(e\left(\frac{1085}{1368}\right)\) \(e\left(\frac{635}{684}\right)\) \(e\left(\frac{2461}{3420}\right)\)
\(\chi_{254144}(13,\cdot)\) 254144.sh 13680 yes \(1\) \(1\) \(e\left(\frac{4499}{13680}\right)\) \(e\left(\frac{7097}{13680}\right)\) \(e\left(\frac{851}{2280}\right)\) \(e\left(\frac{4499}{6840}\right)\) \(e\left(\frac{8983}{13680}\right)\) \(e\left(\frac{2899}{3420}\right)\) \(e\left(\frac{1913}{3420}\right)\) \(e\left(\frac{1921}{2736}\right)\) \(e\left(\frac{787}{1368}\right)\) \(e\left(\frac{257}{6840}\right)\)
\(\chi_{254144}(15,\cdot)\) 254144.rg 3420 no \(1\) \(1\) \(e\left(\frac{2177}{3420}\right)\) \(e\left(\frac{2471}{3420}\right)\) \(e\left(\frac{34}{285}\right)\) \(e\left(\frac{467}{1710}\right)\) \(e\left(\frac{2899}{3420}\right)\) \(e\left(\frac{307}{855}\right)\) \(e\left(\frac{824}{855}\right)\) \(e\left(\frac{517}{684}\right)\) \(e\left(\frac{65}{171}\right)\) \(e\left(\frac{761}{1710}\right)\)
\(\chi_{254144}(17,\cdot)\) 254144.rh 3420 no \(-1\) \(1\) \(e\left(\frac{1039}{3420}\right)\) \(e\left(\frac{2257}{3420}\right)\) \(e\left(\frac{263}{285}\right)\) \(e\left(\frac{1039}{1710}\right)\) \(e\left(\frac{1913}{3420}\right)\) \(e\left(\frac{824}{855}\right)\) \(e\left(\frac{761}{1710}\right)\) \(e\left(\frac{155}{684}\right)\) \(e\left(\frac{335}{342}\right)\) \(e\left(\frac{547}{1710}\right)\)
\(\chi_{254144}(21,\cdot)\) 254144.re 2736 yes \(1\) \(1\) \(e\left(\frac{2453}{2736}\right)\) \(e\left(\frac{2351}{2736}\right)\) \(e\left(\frac{173}{456}\right)\) \(e\left(\frac{1085}{1368}\right)\) \(e\left(\frac{1921}{2736}\right)\) \(e\left(\frac{517}{684}\right)\) \(e\left(\frac{155}{684}\right)\) \(e\left(\frac{755}{2736}\right)\) \(e\left(\frac{1025}{1368}\right)\) \(e\left(\frac{983}{1368}\right)\)
\(\chi_{254144}(23,\cdot)\) 254144.po 1368 no \(-1\) \(1\) \(e\left(\frac{635}{1368}\right)\) \(e\left(\frac{1253}{1368}\right)\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{635}{684}\right)\) \(e\left(\frac{787}{1368}\right)\) \(e\left(\frac{65}{171}\right)\) \(e\left(\frac{335}{342}\right)\) \(e\left(\frac{1025}{1368}\right)\) \(e\left(\frac{53}{684}\right)\) \(e\left(\frac{569}{684}\right)\)
\(\chi_{254144}(25,\cdot)\) 254144.ry 6840 no \(1\) \(1\) \(e\left(\frac{2461}{6840}\right)\) \(e\left(\frac{583}{6840}\right)\) \(e\left(\frac{409}{1140}\right)\) \(e\left(\frac{2461}{3420}\right)\) \(e\left(\frac{257}{6840}\right)\) \(e\left(\frac{761}{1710}\right)\) \(e\left(\frac{547}{1710}\right)\) \(e\left(\frac{983}{1368}\right)\) \(e\left(\frac{569}{684}\right)\) \(e\left(\frac{583}{3420}\right)\)
\(\chi_{254144}(27,\cdot)\) 254144.rq 4560 yes \(1\) \(1\) \(e\left(\frac{3967}{4560}\right)\) \(e\left(\frac{181}{4560}\right)\) \(e\left(\frac{623}{760}\right)\) \(e\left(\frac{1687}{2280}\right)\) \(e\left(\frac{4499}{4560}\right)\) \(e\left(\frac{1037}{1140}\right)\) \(e\left(\frac{1039}{1140}\right)\) \(e\left(\frac{629}{912}\right)\) \(e\left(\frac{179}{456}\right)\) \(e\left(\frac{181}{2280}\right)\)
\(\chi_{254144}(29,\cdot)\) 254144.sh 13680 yes \(1\) \(1\) \(e\left(\frac{7823}{13680}\right)\) \(e\left(\frac{269}{13680}\right)\) \(e\left(\frac{527}{2280}\right)\) \(e\left(\frac{983}{6840}\right)\) \(e\left(\frac{5011}{13680}\right)\) \(e\left(\frac{2023}{3420}\right)\) \(e\left(\frac{2681}{3420}\right)\) \(e\left(\frac{2197}{2736}\right)\) \(e\left(\frac{1207}{1368}\right)\) \(e\left(\frac{269}{6840}\right)\)
\(\chi_{254144}(31,\cdot)\) 254144.ns 570 no \(1\) \(1\) \(e\left(\frac{541}{570}\right)\) \(e\left(\frac{253}{570}\right)\) \(e\left(\frac{113}{190}\right)\) \(e\left(\frac{256}{285}\right)\) \(e\left(\frac{166}{285}\right)\) \(e\left(\frac{112}{285}\right)\) \(e\left(\frac{179}{285}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{253}{285}\right)\)
\(\chi_{254144}(35,\cdot)\) 254144.se 13680 yes \(1\) \(1\) \(e\left(\frac{8479}{13680}\right)\) \(e\left(\frac{3037}{13680}\right)\) \(e\left(\frac{1411}{2280}\right)\) \(e\left(\frac{1639}{6840}\right)\) \(e\left(\frac{12203}{13680}\right)\) \(e\left(\frac{2879}{3420}\right)\) \(e\left(\frac{1993}{3420}\right)\) \(e\left(\frac{653}{2736}\right)\) \(e\left(\frac{275}{1368}\right)\) \(e\left(\frac{3037}{6840}\right)\)
\(\chi_{254144}(37,\cdot)\) 254144.qa 1520 yes \(-1\) \(1\) \(e\left(\frac{877}{1520}\right)\) \(e\left(\frac{1351}{1520}\right)\) \(e\left(\frac{579}{760}\right)\) \(e\left(\frac{117}{760}\right)\) \(e\left(\frac{1409}{1520}\right)\) \(e\left(\frac{177}{380}\right)\) \(e\left(\frac{109}{380}\right)\) \(e\left(\frac{103}{304}\right)\) \(e\left(\frac{13}{152}\right)\) \(e\left(\frac{591}{760}\right)\)
\(\chi_{254144}(39,\cdot)\) 254144.ot 760 no \(1\) \(1\) \(e\left(\frac{217}{760}\right)\) \(e\left(\frac{151}{760}\right)\) \(e\left(\frac{119}{380}\right)\) \(e\left(\frac{217}{380}\right)\) \(e\left(\frac{749}{760}\right)\) \(e\left(\frac{46}{95}\right)\) \(e\left(\frac{82}{95}\right)\) \(e\left(\frac{91}{152}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{151}{380}\right)\)
\(\chi_{254144}(41,\cdot)\) 254144.sd 6840 no \(1\) \(1\) \(e\left(\frac{1751}{6840}\right)\) \(e\left(\frac{3593}{6840}\right)\) \(e\left(\frac{269}{1140}\right)\) \(e\left(\frac{1751}{3420}\right)\) \(e\left(\frac{6007}{6840}\right)\) \(e\left(\frac{668}{855}\right)\) \(e\left(\frac{406}{855}\right)\) \(e\left(\frac{673}{1368}\right)\) \(e\left(\frac{583}{684}\right)\) \(e\left(\frac{173}{3420}\right)\)
\(\chi_{254144}(43,\cdot)\) 254144.rd 2736 yes \(1\) \(1\) \(e\left(\frac{197}{2736}\right)\) \(e\left(\frac{239}{2736}\right)\) \(e\left(\frac{425}{456}\right)\) \(e\left(\frac{197}{1368}\right)\) \(e\left(\frac{1945}{2736}\right)\) \(e\left(\frac{109}{684}\right)\) \(e\left(\frac{419}{684}\right)\) \(e\left(\frac{11}{2736}\right)\) \(e\left(\frac{101}{1368}\right)\) \(e\left(\frac{239}{1368}\right)\)
\(\chi_{254144}(45,\cdot)\) 254144.pb 912 no \(1\) \(1\) \(e\left(\frac{541}{912}\right)\) \(e\left(\frac{367}{912}\right)\) \(e\left(\frac{9}{152}\right)\) \(e\left(\frac{85}{456}\right)\) \(e\left(\frac{161}{912}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{595}{912}\right)\) \(e\left(\frac{385}{456}\right)\) \(e\left(\frac{367}{456}\right)\)
\(\chi_{254144}(47,\cdot)\) 254144.rj 3420 no \(-1\) \(1\) \(e\left(\frac{2453}{3420}\right)\) \(e\left(\frac{2009}{3420}\right)\) \(e\left(\frac{1}{285}\right)\) \(e\left(\frac{743}{1710}\right)\) \(e\left(\frac{211}{3420}\right)\) \(e\left(\frac{521}{1710}\right)\) \(e\left(\frac{326}{855}\right)\) \(e\left(\frac{493}{684}\right)\) \(e\left(\frac{17}{171}\right)\) \(e\left(\frac{299}{1710}\right)\)
\(\chi_{254144}(49,\cdot)\) 254144.pd 1140 no \(1\) \(1\) \(e\left(\frac{1003}{1140}\right)\) \(e\left(\frac{409}{1140}\right)\) \(e\left(\frac{167}{190}\right)\) \(e\left(\frac{433}{570}\right)\) \(e\left(\frac{851}{1140}\right)\) \(e\left(\frac{68}{285}\right)\) \(e\left(\frac{241}{285}\right)\) \(e\left(\frac{173}{228}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{409}{570}\right)\)
\(\chi_{254144}(51,\cdot)\) 254144.sk 13680 yes \(-1\) \(1\) \(e\left(\frac{3563}{13680}\right)\) \(e\left(\frac{4649}{13680}\right)\) \(e\left(\frac{1967}{2280}\right)\) \(e\left(\frac{3563}{6840}\right)\) \(e\left(\frac{12151}{13680}\right)\) \(e\left(\frac{2053}{3420}\right)\) \(e\left(\frac{2561}{3420}\right)\) \(e\left(\frac{337}{2736}\right)\) \(e\left(\frac{607}{1368}\right)\) \(e\left(\frac{4649}{6840}\right)\)
\(\chi_{254144}(53,\cdot)\) 254144.sf 13680 yes \(-1\) \(1\) \(e\left(\frac{6449}{13680}\right)\) \(e\left(\frac{227}{13680}\right)\) \(e\left(\frac{1661}{2280}\right)\) \(e\left(\frac{6449}{6840}\right)\) \(e\left(\frac{1813}{13680}\right)\) \(e\left(\frac{1669}{3420}\right)\) \(e\left(\frac{3413}{3420}\right)\) \(e\left(\frac{547}{2736}\right)\) \(e\left(\frac{1105}{1368}\right)\) \(e\left(\frac{227}{6840}\right)\)
\(\chi_{254144}(59,\cdot)\) 254144.si 13680 yes \(1\) \(1\) \(e\left(\frac{11653}{13680}\right)\) \(e\left(\frac{8839}{13680}\right)\) \(e\left(\frac{2077}{2280}\right)\) \(e\left(\frac{4813}{6840}\right)\) \(e\left(\frac{3521}{13680}\right)\) \(e\left(\frac{1703}{3420}\right)\) \(e\left(\frac{541}{3420}\right)\) \(e\left(\frac{2087}{2736}\right)\) \(e\left(\frac{881}{1368}\right)\) \(e\left(\frac{1999}{6840}\right)\)
\(\chi_{254144}(61,\cdot)\) 254144.sj 13680 yes \(-1\) \(1\) \(e\left(\frac{2111}{13680}\right)\) \(e\left(\frac{2693}{13680}\right)\) \(e\left(\frac{1199}{2280}\right)\) \(e\left(\frac{2111}{6840}\right)\) \(e\left(\frac{2947}{13680}\right)\) \(e\left(\frac{1201}{3420}\right)\) \(e\left(\frac{497}{3420}\right)\) \(e\left(\frac{1861}{2736}\right)\) \(e\left(\frac{1231}{1368}\right)\) \(e\left(\frac{2693}{6840}\right)\)
\(\chi_{254144}(63,\cdot)\) 254144.qh 1710 no \(1\) \(1\) \(e\left(\frac{1459}{1710}\right)\) \(e\left(\frac{461}{855}\right)\) \(e\left(\frac{91}{285}\right)\) \(e\left(\frac{604}{855}\right)\) \(e\left(\frac{53}{1710}\right)\) \(e\left(\frac{671}{1710}\right)\) \(e\left(\frac{907}{1710}\right)\) \(e\left(\frac{59}{342}\right)\) \(e\left(\frac{73}{342}\right)\) \(e\left(\frac{67}{855}\right)\)
\(\chi_{254144}(65,\cdot)\) 254144.iq 114 no \(1\) \(1\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{7}{57}\right)\)
\(\chi_{254144}(67,\cdot)\) 254144.qz 2736 no \(1\) \(1\) \(e\left(\frac{1075}{2736}\right)\) \(e\left(\frac{1825}{2736}\right)\) \(e\left(\frac{163}{456}\right)\) \(e\left(\frac{1075}{1368}\right)\) \(e\left(\frac{1607}{2736}\right)\) \(e\left(\frac{41}{684}\right)\) \(e\left(\frac{7}{684}\right)\) \(e\left(\frac{2053}{2736}\right)\) \(e\left(\frac{1315}{1368}\right)\) \(e\left(\frac{457}{1368}\right)\)
\(\chi_{254144}(69,\cdot)\) 254144.lg 240 no \(-1\) \(1\) \(e\left(\frac{101}{240}\right)\) \(e\left(\frac{143}{240}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{217}{240}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{120}\right)\)
\(\chi_{254144}(71,\cdot)\) 254144.rx 6840 no \(1\) \(1\) \(e\left(\frac{4673}{6840}\right)\) \(e\left(\frac{5579}{6840}\right)\) \(e\left(\frac{227}{1140}\right)\) \(e\left(\frac{1253}{3420}\right)\) \(e\left(\frac{5281}{6840}\right)\) \(e\left(\frac{853}{1710}\right)\) \(e\left(\frac{521}{1710}\right)\) \(e\left(\frac{1207}{1368}\right)\) \(e\left(\frac{667}{684}\right)\) \(e\left(\frac{2159}{3420}\right)\)
\(\chi_{254144}(73,\cdot)\) 254144.rw 6840 no \(-1\) \(1\) \(e\left(\frac{1679}{6840}\right)\) \(e\left(\frac{1037}{6840}\right)\) \(e\left(\frac{881}{1140}\right)\) \(e\left(\frac{1679}{3420}\right)\) \(e\left(\frac{463}{6840}\right)\) \(e\left(\frac{679}{1710}\right)\) \(e\left(\frac{694}{855}\right)\) \(e\left(\frac{25}{1368}\right)\) \(e\left(\frac{43}{684}\right)\) \(e\left(\frac{1037}{3420}\right)\)
Click here to search among the remaining 109408 characters.