Character group
|
| ||
| Order | = | 109440 |
|
| ||
| Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{13680}\) |
|
| ||
| Generators | = | $\chi_{254144}(166783,\cdot)$, $\chi_{254144}(174725,\cdot)$, $\chi_{254144}(69313,\cdot)$, $\chi_{254144}(14081,\cdot)$ |
First 32 of 109440 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{254144}(1,\cdot)\) | 254144.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{254144}(3,\cdot)\) | 254144.si | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{13087}{13680}\right)\) | \(e\left(\frac{9301}{13680}\right)\) | \(e\left(\frac{2143}{2280}\right)\) | \(e\left(\frac{6247}{6840}\right)\) | \(e\left(\frac{4499}{13680}\right)\) | \(e\left(\frac{2177}{3420}\right)\) | \(e\left(\frac{1039}{3420}\right)\) | \(e\left(\frac{2453}{2736}\right)\) | \(e\left(\frac{635}{1368}\right)\) | \(e\left(\frac{2461}{6840}\right)\) |
| \(\chi_{254144}(5,\cdot)\) | 254144.sl | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{9301}{13680}\right)\) | \(e\left(\frac{583}{13680}\right)\) | \(e\left(\frac{409}{2280}\right)\) | \(e\left(\frac{2461}{6840}\right)\) | \(e\left(\frac{7097}{13680}\right)\) | \(e\left(\frac{2471}{3420}\right)\) | \(e\left(\frac{2257}{3420}\right)\) | \(e\left(\frac{2351}{2736}\right)\) | \(e\left(\frac{1253}{1368}\right)\) | \(e\left(\frac{583}{6840}\right)\) |
| \(\chi_{254144}(7,\cdot)\) | 254144.qq | 2280 | no | \(1\) | \(1\) | \(e\left(\frac{2143}{2280}\right)\) | \(e\left(\frac{409}{2280}\right)\) | \(e\left(\frac{167}{380}\right)\) | \(e\left(\frac{1003}{1140}\right)\) | \(e\left(\frac{851}{2280}\right)\) | \(e\left(\frac{34}{285}\right)\) | \(e\left(\frac{263}{285}\right)\) | \(e\left(\frac{173}{456}\right)\) | \(e\left(\frac{65}{228}\right)\) | \(e\left(\frac{409}{1140}\right)\) |
| \(\chi_{254144}(9,\cdot)\) | 254144.ry | 6840 | no | \(1\) | \(1\) | \(e\left(\frac{6247}{6840}\right)\) | \(e\left(\frac{2461}{6840}\right)\) | \(e\left(\frac{1003}{1140}\right)\) | \(e\left(\frac{2827}{3420}\right)\) | \(e\left(\frac{4499}{6840}\right)\) | \(e\left(\frac{467}{1710}\right)\) | \(e\left(\frac{1039}{1710}\right)\) | \(e\left(\frac{1085}{1368}\right)\) | \(e\left(\frac{635}{684}\right)\) | \(e\left(\frac{2461}{3420}\right)\) |
| \(\chi_{254144}(13,\cdot)\) | 254144.sh | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{4499}{13680}\right)\) | \(e\left(\frac{7097}{13680}\right)\) | \(e\left(\frac{851}{2280}\right)\) | \(e\left(\frac{4499}{6840}\right)\) | \(e\left(\frac{8983}{13680}\right)\) | \(e\left(\frac{2899}{3420}\right)\) | \(e\left(\frac{1913}{3420}\right)\) | \(e\left(\frac{1921}{2736}\right)\) | \(e\left(\frac{787}{1368}\right)\) | \(e\left(\frac{257}{6840}\right)\) |
| \(\chi_{254144}(15,\cdot)\) | 254144.rg | 3420 | no | \(1\) | \(1\) | \(e\left(\frac{2177}{3420}\right)\) | \(e\left(\frac{2471}{3420}\right)\) | \(e\left(\frac{34}{285}\right)\) | \(e\left(\frac{467}{1710}\right)\) | \(e\left(\frac{2899}{3420}\right)\) | \(e\left(\frac{307}{855}\right)\) | \(e\left(\frac{824}{855}\right)\) | \(e\left(\frac{517}{684}\right)\) | \(e\left(\frac{65}{171}\right)\) | \(e\left(\frac{761}{1710}\right)\) |
| \(\chi_{254144}(17,\cdot)\) | 254144.rh | 3420 | no | \(-1\) | \(1\) | \(e\left(\frac{1039}{3420}\right)\) | \(e\left(\frac{2257}{3420}\right)\) | \(e\left(\frac{263}{285}\right)\) | \(e\left(\frac{1039}{1710}\right)\) | \(e\left(\frac{1913}{3420}\right)\) | \(e\left(\frac{824}{855}\right)\) | \(e\left(\frac{761}{1710}\right)\) | \(e\left(\frac{155}{684}\right)\) | \(e\left(\frac{335}{342}\right)\) | \(e\left(\frac{547}{1710}\right)\) |
| \(\chi_{254144}(21,\cdot)\) | 254144.re | 2736 | yes | \(1\) | \(1\) | \(e\left(\frac{2453}{2736}\right)\) | \(e\left(\frac{2351}{2736}\right)\) | \(e\left(\frac{173}{456}\right)\) | \(e\left(\frac{1085}{1368}\right)\) | \(e\left(\frac{1921}{2736}\right)\) | \(e\left(\frac{517}{684}\right)\) | \(e\left(\frac{155}{684}\right)\) | \(e\left(\frac{755}{2736}\right)\) | \(e\left(\frac{1025}{1368}\right)\) | \(e\left(\frac{983}{1368}\right)\) |
| \(\chi_{254144}(23,\cdot)\) | 254144.po | 1368 | no | \(-1\) | \(1\) | \(e\left(\frac{635}{1368}\right)\) | \(e\left(\frac{1253}{1368}\right)\) | \(e\left(\frac{65}{228}\right)\) | \(e\left(\frac{635}{684}\right)\) | \(e\left(\frac{787}{1368}\right)\) | \(e\left(\frac{65}{171}\right)\) | \(e\left(\frac{335}{342}\right)\) | \(e\left(\frac{1025}{1368}\right)\) | \(e\left(\frac{53}{684}\right)\) | \(e\left(\frac{569}{684}\right)\) |
| \(\chi_{254144}(25,\cdot)\) | 254144.ry | 6840 | no | \(1\) | \(1\) | \(e\left(\frac{2461}{6840}\right)\) | \(e\left(\frac{583}{6840}\right)\) | \(e\left(\frac{409}{1140}\right)\) | \(e\left(\frac{2461}{3420}\right)\) | \(e\left(\frac{257}{6840}\right)\) | \(e\left(\frac{761}{1710}\right)\) | \(e\left(\frac{547}{1710}\right)\) | \(e\left(\frac{983}{1368}\right)\) | \(e\left(\frac{569}{684}\right)\) | \(e\left(\frac{583}{3420}\right)\) |
| \(\chi_{254144}(27,\cdot)\) | 254144.rq | 4560 | yes | \(1\) | \(1\) | \(e\left(\frac{3967}{4560}\right)\) | \(e\left(\frac{181}{4560}\right)\) | \(e\left(\frac{623}{760}\right)\) | \(e\left(\frac{1687}{2280}\right)\) | \(e\left(\frac{4499}{4560}\right)\) | \(e\left(\frac{1037}{1140}\right)\) | \(e\left(\frac{1039}{1140}\right)\) | \(e\left(\frac{629}{912}\right)\) | \(e\left(\frac{179}{456}\right)\) | \(e\left(\frac{181}{2280}\right)\) |
| \(\chi_{254144}(29,\cdot)\) | 254144.sh | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{7823}{13680}\right)\) | \(e\left(\frac{269}{13680}\right)\) | \(e\left(\frac{527}{2280}\right)\) | \(e\left(\frac{983}{6840}\right)\) | \(e\left(\frac{5011}{13680}\right)\) | \(e\left(\frac{2023}{3420}\right)\) | \(e\left(\frac{2681}{3420}\right)\) | \(e\left(\frac{2197}{2736}\right)\) | \(e\left(\frac{1207}{1368}\right)\) | \(e\left(\frac{269}{6840}\right)\) |
| \(\chi_{254144}(31,\cdot)\) | 254144.ns | 570 | no | \(1\) | \(1\) | \(e\left(\frac{541}{570}\right)\) | \(e\left(\frac{253}{570}\right)\) | \(e\left(\frac{113}{190}\right)\) | \(e\left(\frac{256}{285}\right)\) | \(e\left(\frac{166}{285}\right)\) | \(e\left(\frac{112}{285}\right)\) | \(e\left(\frac{179}{285}\right)\) | \(e\left(\frac{31}{57}\right)\) | \(e\left(\frac{97}{114}\right)\) | \(e\left(\frac{253}{285}\right)\) |
| \(\chi_{254144}(35,\cdot)\) | 254144.se | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{8479}{13680}\right)\) | \(e\left(\frac{3037}{13680}\right)\) | \(e\left(\frac{1411}{2280}\right)\) | \(e\left(\frac{1639}{6840}\right)\) | \(e\left(\frac{12203}{13680}\right)\) | \(e\left(\frac{2879}{3420}\right)\) | \(e\left(\frac{1993}{3420}\right)\) | \(e\left(\frac{653}{2736}\right)\) | \(e\left(\frac{275}{1368}\right)\) | \(e\left(\frac{3037}{6840}\right)\) |
| \(\chi_{254144}(37,\cdot)\) | 254144.qa | 1520 | yes | \(-1\) | \(1\) | \(e\left(\frac{877}{1520}\right)\) | \(e\left(\frac{1351}{1520}\right)\) | \(e\left(\frac{579}{760}\right)\) | \(e\left(\frac{117}{760}\right)\) | \(e\left(\frac{1409}{1520}\right)\) | \(e\left(\frac{177}{380}\right)\) | \(e\left(\frac{109}{380}\right)\) | \(e\left(\frac{103}{304}\right)\) | \(e\left(\frac{13}{152}\right)\) | \(e\left(\frac{591}{760}\right)\) |
| \(\chi_{254144}(39,\cdot)\) | 254144.ot | 760 | no | \(1\) | \(1\) | \(e\left(\frac{217}{760}\right)\) | \(e\left(\frac{151}{760}\right)\) | \(e\left(\frac{119}{380}\right)\) | \(e\left(\frac{217}{380}\right)\) | \(e\left(\frac{749}{760}\right)\) | \(e\left(\frac{46}{95}\right)\) | \(e\left(\frac{82}{95}\right)\) | \(e\left(\frac{91}{152}\right)\) | \(e\left(\frac{3}{76}\right)\) | \(e\left(\frac{151}{380}\right)\) |
| \(\chi_{254144}(41,\cdot)\) | 254144.sd | 6840 | no | \(1\) | \(1\) | \(e\left(\frac{1751}{6840}\right)\) | \(e\left(\frac{3593}{6840}\right)\) | \(e\left(\frac{269}{1140}\right)\) | \(e\left(\frac{1751}{3420}\right)\) | \(e\left(\frac{6007}{6840}\right)\) | \(e\left(\frac{668}{855}\right)\) | \(e\left(\frac{406}{855}\right)\) | \(e\left(\frac{673}{1368}\right)\) | \(e\left(\frac{583}{684}\right)\) | \(e\left(\frac{173}{3420}\right)\) |
| \(\chi_{254144}(43,\cdot)\) | 254144.rd | 2736 | yes | \(1\) | \(1\) | \(e\left(\frac{197}{2736}\right)\) | \(e\left(\frac{239}{2736}\right)\) | \(e\left(\frac{425}{456}\right)\) | \(e\left(\frac{197}{1368}\right)\) | \(e\left(\frac{1945}{2736}\right)\) | \(e\left(\frac{109}{684}\right)\) | \(e\left(\frac{419}{684}\right)\) | \(e\left(\frac{11}{2736}\right)\) | \(e\left(\frac{101}{1368}\right)\) | \(e\left(\frac{239}{1368}\right)\) |
| \(\chi_{254144}(45,\cdot)\) | 254144.pb | 912 | no | \(1\) | \(1\) | \(e\left(\frac{541}{912}\right)\) | \(e\left(\frac{367}{912}\right)\) | \(e\left(\frac{9}{152}\right)\) | \(e\left(\frac{85}{456}\right)\) | \(e\left(\frac{161}{912}\right)\) | \(e\left(\frac{227}{228}\right)\) | \(e\left(\frac{61}{228}\right)\) | \(e\left(\frac{595}{912}\right)\) | \(e\left(\frac{385}{456}\right)\) | \(e\left(\frac{367}{456}\right)\) |
| \(\chi_{254144}(47,\cdot)\) | 254144.rj | 3420 | no | \(-1\) | \(1\) | \(e\left(\frac{2453}{3420}\right)\) | \(e\left(\frac{2009}{3420}\right)\) | \(e\left(\frac{1}{285}\right)\) | \(e\left(\frac{743}{1710}\right)\) | \(e\left(\frac{211}{3420}\right)\) | \(e\left(\frac{521}{1710}\right)\) | \(e\left(\frac{326}{855}\right)\) | \(e\left(\frac{493}{684}\right)\) | \(e\left(\frac{17}{171}\right)\) | \(e\left(\frac{299}{1710}\right)\) |
| \(\chi_{254144}(49,\cdot)\) | 254144.pd | 1140 | no | \(1\) | \(1\) | \(e\left(\frac{1003}{1140}\right)\) | \(e\left(\frac{409}{1140}\right)\) | \(e\left(\frac{167}{190}\right)\) | \(e\left(\frac{433}{570}\right)\) | \(e\left(\frac{851}{1140}\right)\) | \(e\left(\frac{68}{285}\right)\) | \(e\left(\frac{241}{285}\right)\) | \(e\left(\frac{173}{228}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{409}{570}\right)\) |
| \(\chi_{254144}(51,\cdot)\) | 254144.sk | 13680 | yes | \(-1\) | \(1\) | \(e\left(\frac{3563}{13680}\right)\) | \(e\left(\frac{4649}{13680}\right)\) | \(e\left(\frac{1967}{2280}\right)\) | \(e\left(\frac{3563}{6840}\right)\) | \(e\left(\frac{12151}{13680}\right)\) | \(e\left(\frac{2053}{3420}\right)\) | \(e\left(\frac{2561}{3420}\right)\) | \(e\left(\frac{337}{2736}\right)\) | \(e\left(\frac{607}{1368}\right)\) | \(e\left(\frac{4649}{6840}\right)\) |
| \(\chi_{254144}(53,\cdot)\) | 254144.sf | 13680 | yes | \(-1\) | \(1\) | \(e\left(\frac{6449}{13680}\right)\) | \(e\left(\frac{227}{13680}\right)\) | \(e\left(\frac{1661}{2280}\right)\) | \(e\left(\frac{6449}{6840}\right)\) | \(e\left(\frac{1813}{13680}\right)\) | \(e\left(\frac{1669}{3420}\right)\) | \(e\left(\frac{3413}{3420}\right)\) | \(e\left(\frac{547}{2736}\right)\) | \(e\left(\frac{1105}{1368}\right)\) | \(e\left(\frac{227}{6840}\right)\) |
| \(\chi_{254144}(59,\cdot)\) | 254144.si | 13680 | yes | \(1\) | \(1\) | \(e\left(\frac{11653}{13680}\right)\) | \(e\left(\frac{8839}{13680}\right)\) | \(e\left(\frac{2077}{2280}\right)\) | \(e\left(\frac{4813}{6840}\right)\) | \(e\left(\frac{3521}{13680}\right)\) | \(e\left(\frac{1703}{3420}\right)\) | \(e\left(\frac{541}{3420}\right)\) | \(e\left(\frac{2087}{2736}\right)\) | \(e\left(\frac{881}{1368}\right)\) | \(e\left(\frac{1999}{6840}\right)\) |
| \(\chi_{254144}(61,\cdot)\) | 254144.sj | 13680 | yes | \(-1\) | \(1\) | \(e\left(\frac{2111}{13680}\right)\) | \(e\left(\frac{2693}{13680}\right)\) | \(e\left(\frac{1199}{2280}\right)\) | \(e\left(\frac{2111}{6840}\right)\) | \(e\left(\frac{2947}{13680}\right)\) | \(e\left(\frac{1201}{3420}\right)\) | \(e\left(\frac{497}{3420}\right)\) | \(e\left(\frac{1861}{2736}\right)\) | \(e\left(\frac{1231}{1368}\right)\) | \(e\left(\frac{2693}{6840}\right)\) |
| \(\chi_{254144}(63,\cdot)\) | 254144.qh | 1710 | no | \(1\) | \(1\) | \(e\left(\frac{1459}{1710}\right)\) | \(e\left(\frac{461}{855}\right)\) | \(e\left(\frac{91}{285}\right)\) | \(e\left(\frac{604}{855}\right)\) | \(e\left(\frac{53}{1710}\right)\) | \(e\left(\frac{671}{1710}\right)\) | \(e\left(\frac{907}{1710}\right)\) | \(e\left(\frac{59}{342}\right)\) | \(e\left(\frac{73}{342}\right)\) | \(e\left(\frac{67}{855}\right)\) |
| \(\chi_{254144}(65,\cdot)\) | 254144.iq | 114 | no | \(1\) | \(1\) | \(e\left(\frac{1}{114}\right)\) | \(e\left(\frac{32}{57}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{1}{57}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{25}{114}\right)\) | \(e\left(\frac{32}{57}\right)\) | \(e\left(\frac{28}{57}\right)\) | \(e\left(\frac{7}{57}\right)\) |
| \(\chi_{254144}(67,\cdot)\) | 254144.qz | 2736 | no | \(1\) | \(1\) | \(e\left(\frac{1075}{2736}\right)\) | \(e\left(\frac{1825}{2736}\right)\) | \(e\left(\frac{163}{456}\right)\) | \(e\left(\frac{1075}{1368}\right)\) | \(e\left(\frac{1607}{2736}\right)\) | \(e\left(\frac{41}{684}\right)\) | \(e\left(\frac{7}{684}\right)\) | \(e\left(\frac{2053}{2736}\right)\) | \(e\left(\frac{1315}{1368}\right)\) | \(e\left(\frac{457}{1368}\right)\) |
| \(\chi_{254144}(69,\cdot)\) | 254144.lg | 240 | no | \(-1\) | \(1\) | \(e\left(\frac{101}{240}\right)\) | \(e\left(\frac{143}{240}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{101}{120}\right)\) | \(e\left(\frac{217}{240}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{120}\right)\) |
| \(\chi_{254144}(71,\cdot)\) | 254144.rx | 6840 | no | \(1\) | \(1\) | \(e\left(\frac{4673}{6840}\right)\) | \(e\left(\frac{5579}{6840}\right)\) | \(e\left(\frac{227}{1140}\right)\) | \(e\left(\frac{1253}{3420}\right)\) | \(e\left(\frac{5281}{6840}\right)\) | \(e\left(\frac{853}{1710}\right)\) | \(e\left(\frac{521}{1710}\right)\) | \(e\left(\frac{1207}{1368}\right)\) | \(e\left(\frac{667}{684}\right)\) | \(e\left(\frac{2159}{3420}\right)\) |
| \(\chi_{254144}(73,\cdot)\) | 254144.rw | 6840 | no | \(-1\) | \(1\) | \(e\left(\frac{1679}{6840}\right)\) | \(e\left(\frac{1037}{6840}\right)\) | \(e\left(\frac{881}{1140}\right)\) | \(e\left(\frac{1679}{3420}\right)\) | \(e\left(\frac{463}{6840}\right)\) | \(e\left(\frac{679}{1710}\right)\) | \(e\left(\frac{694}{855}\right)\) | \(e\left(\frac{25}{1368}\right)\) | \(e\left(\frac{43}{684}\right)\) | \(e\left(\frac{1037}{3420}\right)\) |