sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2527, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([57,107]))
pari:[g,chi] = znchar(Mod(1074,2527))
| Modulus: | \(2527\) | |
| Conductor: | \(2527\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(342\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2527}(10,\cdot)\)
\(\chi_{2527}(33,\cdot)\)
\(\chi_{2527}(40,\cdot)\)
\(\chi_{2527}(108,\cdot)\)
\(\chi_{2527}(117,\cdot)\)
\(\chi_{2527}(129,\cdot)\)
\(\chi_{2527}(143,\cdot)\)
\(\chi_{2527}(166,\cdot)\)
\(\chi_{2527}(173,\cdot)\)
\(\chi_{2527}(241,\cdot)\)
\(\chi_{2527}(250,\cdot)\)
\(\chi_{2527}(276,\cdot)\)
\(\chi_{2527}(306,\cdot)\)
\(\chi_{2527}(374,\cdot)\)
\(\chi_{2527}(383,\cdot)\)
\(\chi_{2527}(395,\cdot)\)
\(\chi_{2527}(409,\cdot)\)
\(\chi_{2527}(432,\cdot)\)
\(\chi_{2527}(439,\cdot)\)
\(\chi_{2527}(507,\cdot)\)
\(\chi_{2527}(516,\cdot)\)
\(\chi_{2527}(528,\cdot)\)
\(\chi_{2527}(542,\cdot)\)
\(\chi_{2527}(565,\cdot)\)
\(\chi_{2527}(572,\cdot)\)
\(\chi_{2527}(640,\cdot)\)
\(\chi_{2527}(649,\cdot)\)
\(\chi_{2527}(661,\cdot)\)
\(\chi_{2527}(675,\cdot)\)
\(\chi_{2527}(698,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,1807)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{107}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 2527 }(1074, a) \) |
\(1\) | \(1\) | \(e\left(\frac{221}{342}\right)\) | \(e\left(\frac{112}{171}\right)\) | \(e\left(\frac{50}{171}\right)\) | \(e\left(\frac{143}{342}\right)\) | \(e\left(\frac{103}{342}\right)\) | \(e\left(\frac{107}{114}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{11}{171}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) |
sage:chi.jacobi_sum(n)