sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2432, base_ring=CyclotomicField(96))
M = H._module
chi = DirichletCharacter(H, M([48,21,64]))
pari:[g,chi] = znchar(Mod(467,2432))
Modulus: | \(2432\) | |
Conductor: | \(2432\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(96\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2432}(11,\cdot)\)
\(\chi_{2432}(83,\cdot)\)
\(\chi_{2432}(163,\cdot)\)
\(\chi_{2432}(235,\cdot)\)
\(\chi_{2432}(315,\cdot)\)
\(\chi_{2432}(387,\cdot)\)
\(\chi_{2432}(467,\cdot)\)
\(\chi_{2432}(539,\cdot)\)
\(\chi_{2432}(619,\cdot)\)
\(\chi_{2432}(691,\cdot)\)
\(\chi_{2432}(771,\cdot)\)
\(\chi_{2432}(843,\cdot)\)
\(\chi_{2432}(923,\cdot)\)
\(\chi_{2432}(995,\cdot)\)
\(\chi_{2432}(1075,\cdot)\)
\(\chi_{2432}(1147,\cdot)\)
\(\chi_{2432}(1227,\cdot)\)
\(\chi_{2432}(1299,\cdot)\)
\(\chi_{2432}(1379,\cdot)\)
\(\chi_{2432}(1451,\cdot)\)
\(\chi_{2432}(1531,\cdot)\)
\(\chi_{2432}(1603,\cdot)\)
\(\chi_{2432}(1683,\cdot)\)
\(\chi_{2432}(1755,\cdot)\)
\(\chi_{2432}(1835,\cdot)\)
\(\chi_{2432}(1907,\cdot)\)
\(\chi_{2432}(1987,\cdot)\)
\(\chi_{2432}(2059,\cdot)\)
\(\chi_{2432}(2139,\cdot)\)
\(\chi_{2432}(2211,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1407,2053,1921)\) → \((-1,e\left(\frac{7}{32}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2432 }(467, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{43}{48}\right)\) |
sage:chi.jacobi_sum(n)