Properties

Label 2415.1448
Modulus $2415$
Conductor $2415$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,3,2,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1448,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(2415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.w

\(\chi_{2415}(482,\cdot)\) \(\chi_{2415}(1448,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.29161125.1

Values on generators

\((806,967,346,1891)\) → \((-1,-i,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(1448, a) \) \(1\)\(1\)\(i\)\(-1\)\(-i\)\(1\)\(-i\)\(1\)\(i\)\(-1\)\(i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(1448,a) \;\) at \(\;a = \) e.g. 2