Properties

Label 2380.1903
Modulus $2380$
Conductor $2380$
Order $4$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,3,2,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1903,2380))
 

Basic properties

Modulus: \(2380\)
Conductor: \(2380\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2380.bi

\(\chi_{2380}(1427,\cdot)\) \(\chi_{2380}(1903,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.28322000.3

Values on generators

\((1191,477,1361,1261)\) → \((-1,-i,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 2380 }(1903, a) \) \(-1\)\(1\)\(-i\)\(-1\)\(1\)\(-i\)\(-1\)\(i\)\(i\)\(1\)\(-1\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2380 }(1903,a) \;\) at \(\;a = \) e.g. 2