Properties

Label 2366.1475
Modulus $2366$
Conductor $1183$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([130,53]))
 
Copy content pari:[g,chi] = znchar(Mod(1475,2366))
 

Basic properties

Modulus: \(2366\)
Conductor: \(1183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1183}(292,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2366.ch

\(\chi_{2366}(33,\cdot)\) \(\chi_{2366}(115,\cdot)\) \(\chi_{2366}(171,\cdot)\) \(\chi_{2366}(201,\cdot)\) \(\chi_{2366}(215,\cdot)\) \(\chi_{2366}(297,\cdot)\) \(\chi_{2366}(353,\cdot)\) \(\chi_{2366}(383,\cdot)\) \(\chi_{2366}(397,\cdot)\) \(\chi_{2366}(479,\cdot)\) \(\chi_{2366}(535,\cdot)\) \(\chi_{2366}(565,\cdot)\) \(\chi_{2366}(579,\cdot)\) \(\chi_{2366}(661,\cdot)\) \(\chi_{2366}(717,\cdot)\) \(\chi_{2366}(747,\cdot)\) \(\chi_{2366}(761,\cdot)\) \(\chi_{2366}(843,\cdot)\) \(\chi_{2366}(899,\cdot)\) \(\chi_{2366}(929,\cdot)\) \(\chi_{2366}(943,\cdot)\) \(\chi_{2366}(1025,\cdot)\) \(\chi_{2366}(1081,\cdot)\) \(\chi_{2366}(1111,\cdot)\) \(\chi_{2366}(1125,\cdot)\) \(\chi_{2366}(1207,\cdot)\) \(\chi_{2366}(1293,\cdot)\) \(\chi_{2366}(1307,\cdot)\) \(\chi_{2366}(1389,\cdot)\) \(\chi_{2366}(1445,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((339,2199)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{53}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2366 }(1475, a) \) \(1\)\(1\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{35}{156}\right)\)\(e\left(\frac{12}{13}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{29}{156}\right)\)\(e\left(\frac{17}{39}\right)\)\(i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{35}{78}\right)\)\(e\left(\frac{23}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2366 }(1475,a) \;\) at \(\;a = \) e.g. 2