sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(378))
M = H._module
chi = DirichletCharacter(H, M([364,81]))
pari:[g,chi] = znchar(Mod(1195,2349))
Modulus: | \(2349\) | |
Conductor: | \(2349\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(378\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2349}(4,\cdot)\)
\(\chi_{2349}(13,\cdot)\)
\(\chi_{2349}(22,\cdot)\)
\(\chi_{2349}(34,\cdot)\)
\(\chi_{2349}(67,\cdot)\)
\(\chi_{2349}(121,\cdot)\)
\(\chi_{2349}(151,\cdot)\)
\(\chi_{2349}(178,\cdot)\)
\(\chi_{2349}(187,\cdot)\)
\(\chi_{2349}(196,\cdot)\)
\(\chi_{2349}(238,\cdot)\)
\(\chi_{2349}(241,\cdot)\)
\(\chi_{2349}(265,\cdot)\)
\(\chi_{2349}(274,\cdot)\)
\(\chi_{2349}(283,\cdot)\)
\(\chi_{2349}(295,\cdot)\)
\(\chi_{2349}(328,\cdot)\)
\(\chi_{2349}(382,\cdot)\)
\(\chi_{2349}(412,\cdot)\)
\(\chi_{2349}(439,\cdot)\)
\(\chi_{2349}(448,\cdot)\)
\(\chi_{2349}(457,\cdot)\)
\(\chi_{2349}(499,\cdot)\)
\(\chi_{2349}(502,\cdot)\)
\(\chi_{2349}(526,\cdot)\)
\(\chi_{2349}(535,\cdot)\)
\(\chi_{2349}(544,\cdot)\)
\(\chi_{2349}(556,\cdot)\)
\(\chi_{2349}(589,\cdot)\)
\(\chi_{2349}(643,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{26}{27}\right),e\left(\frac{3}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1195, a) \) |
\(1\) | \(1\) | \(e\left(\frac{67}{378}\right)\) | \(e\left(\frac{67}{189}\right)\) | \(e\left(\frac{163}{189}\right)\) | \(e\left(\frac{185}{189}\right)\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{331}{378}\right)\) | \(e\left(\frac{106}{189}\right)\) | \(e\left(\frac{59}{378}\right)\) | \(e\left(\frac{134}{189}\right)\) |
sage:chi.jacobi_sum(n)