sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(378))
M = H._module
chi = DirichletCharacter(H, M([154,270]))
pari:[g,chi] = znchar(Mod(1096,2349))
Modulus: | \(2349\) | |
Conductor: | \(2349\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(189\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2349}(7,\cdot)\)
\(\chi_{2349}(16,\cdot)\)
\(\chi_{2349}(25,\cdot)\)
\(\chi_{2349}(49,\cdot)\)
\(\chi_{2349}(52,\cdot)\)
\(\chi_{2349}(94,\cdot)\)
\(\chi_{2349}(103,\cdot)\)
\(\chi_{2349}(112,\cdot)\)
\(\chi_{2349}(139,\cdot)\)
\(\chi_{2349}(169,\cdot)\)
\(\chi_{2349}(223,\cdot)\)
\(\chi_{2349}(256,\cdot)\)
\(\chi_{2349}(268,\cdot)\)
\(\chi_{2349}(277,\cdot)\)
\(\chi_{2349}(286,\cdot)\)
\(\chi_{2349}(310,\cdot)\)
\(\chi_{2349}(313,\cdot)\)
\(\chi_{2349}(355,\cdot)\)
\(\chi_{2349}(364,\cdot)\)
\(\chi_{2349}(373,\cdot)\)
\(\chi_{2349}(400,\cdot)\)
\(\chi_{2349}(430,\cdot)\)
\(\chi_{2349}(484,\cdot)\)
\(\chi_{2349}(517,\cdot)\)
\(\chi_{2349}(529,\cdot)\)
\(\chi_{2349}(538,\cdot)\)
\(\chi_{2349}(547,\cdot)\)
\(\chi_{2349}(571,\cdot)\)
\(\chi_{2349}(574,\cdot)\)
\(\chi_{2349}(616,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{11}{27}\right),e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1096, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{189}\right)\) | \(e\left(\frac{46}{189}\right)\) | \(e\left(\frac{16}{189}\right)\) | \(e\left(\frac{17}{189}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{29}{189}\right)\) | \(e\left(\frac{22}{189}\right)\) | \(e\left(\frac{40}{189}\right)\) | \(e\left(\frac{92}{189}\right)\) |
sage:chi.jacobi_sum(n)