sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(756))
M = H._module
chi = DirichletCharacter(H, M([14,675]))
pari:[g,chi] = znchar(Mod(1055,2349))
Modulus: | \(2349\) | |
Conductor: | \(2349\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(756\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2349}(2,\cdot)\)
\(\chi_{2349}(11,\cdot)\)
\(\chi_{2349}(14,\cdot)\)
\(\chi_{2349}(32,\cdot)\)
\(\chi_{2349}(47,\cdot)\)
\(\chi_{2349}(50,\cdot)\)
\(\chi_{2349}(56,\cdot)\)
\(\chi_{2349}(68,\cdot)\)
\(\chi_{2349}(77,\cdot)\)
\(\chi_{2349}(95,\cdot)\)
\(\chi_{2349}(101,\cdot)\)
\(\chi_{2349}(113,\cdot)\)
\(\chi_{2349}(119,\cdot)\)
\(\chi_{2349}(131,\cdot)\)
\(\chi_{2349}(137,\cdot)\)
\(\chi_{2349}(155,\cdot)\)
\(\chi_{2349}(164,\cdot)\)
\(\chi_{2349}(176,\cdot)\)
\(\chi_{2349}(182,\cdot)\)
\(\chi_{2349}(185,\cdot)\)
\(\chi_{2349}(200,\cdot)\)
\(\chi_{2349}(218,\cdot)\)
\(\chi_{2349}(221,\cdot)\)
\(\chi_{2349}(230,\cdot)\)
\(\chi_{2349}(263,\cdot)\)
\(\chi_{2349}(272,\cdot)\)
\(\chi_{2349}(275,\cdot)\)
\(\chi_{2349}(293,\cdot)\)
\(\chi_{2349}(308,\cdot)\)
\(\chi_{2349}(311,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{1}{54}\right),e\left(\frac{25}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1055, a) \) |
\(1\) | \(1\) | \(e\left(\frac{689}{756}\right)\) | \(e\left(\frac{311}{378}\right)\) | \(e\left(\frac{13}{189}\right)\) | \(e\left(\frac{2}{189}\right)\) | \(e\left(\frac{185}{252}\right)\) | \(e\left(\frac{247}{252}\right)\) | \(e\left(\frac{425}{756}\right)\) | \(e\left(\frac{83}{378}\right)\) | \(e\left(\frac{697}{756}\right)\) | \(e\left(\frac{122}{189}\right)\) |
sage:chi.jacobi_sum(n)