Properties

Label 2349.104
Modulus $2349$
Conductor $2349$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([22,81]))
 
Copy content pari:[g,chi] = znchar(Mod(104,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(2349\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.bk

\(\chi_{2349}(41,\cdot)\) \(\chi_{2349}(104,\cdot)\) \(\chi_{2349}(128,\cdot)\) \(\chi_{2349}(191,\cdot)\) \(\chi_{2349}(302,\cdot)\) \(\chi_{2349}(365,\cdot)\) \(\chi_{2349}(389,\cdot)\) \(\chi_{2349}(452,\cdot)\) \(\chi_{2349}(563,\cdot)\) \(\chi_{2349}(626,\cdot)\) \(\chi_{2349}(650,\cdot)\) \(\chi_{2349}(713,\cdot)\) \(\chi_{2349}(824,\cdot)\) \(\chi_{2349}(887,\cdot)\) \(\chi_{2349}(911,\cdot)\) \(\chi_{2349}(974,\cdot)\) \(\chi_{2349}(1085,\cdot)\) \(\chi_{2349}(1148,\cdot)\) \(\chi_{2349}(1172,\cdot)\) \(\chi_{2349}(1235,\cdot)\) \(\chi_{2349}(1346,\cdot)\) \(\chi_{2349}(1409,\cdot)\) \(\chi_{2349}(1433,\cdot)\) \(\chi_{2349}(1496,\cdot)\) \(\chi_{2349}(1607,\cdot)\) \(\chi_{2349}(1670,\cdot)\) \(\chi_{2349}(1694,\cdot)\) \(\chi_{2349}(1757,\cdot)\) \(\chi_{2349}(1868,\cdot)\) \(\chi_{2349}(1931,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((407,1945)\) → \((e\left(\frac{11}{54}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(104, a) \) \(1\)\(1\)\(e\left(\frac{103}{108}\right)\)\(e\left(\frac{49}{54}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{7}{27}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{43}{108}\right)\)\(e\left(\frac{7}{54}\right)\)\(e\left(\frac{23}{108}\right)\)\(e\left(\frac{22}{27}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(104,a) \;\) at \(\;a = \) e.g. 2