Properties

Label 23104.6931
Modulus $23104$
Conductor $23104$
Order $2736$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23104, base_ring=CyclotomicField(2736)) M = H._module chi = DirichletCharacter(H, M([1368,1197,2248]))
 
Copy content pari:[g,chi] = znchar(Mod(6931,23104))
 

Basic properties

Modulus: \(23104\)
Conductor: \(23104\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2736\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 23104.em

\(\chi_{23104}(3,\cdot)\) \(\chi_{23104}(51,\cdot)\) \(\chi_{23104}(59,\cdot)\) \(\chi_{23104}(67,\cdot)\) \(\chi_{23104}(91,\cdot)\) \(\chi_{23104}(147,\cdot)\) \(\chi_{23104}(155,\cdot)\) \(\chi_{23104}(203,\cdot)\) \(\chi_{23104}(211,\cdot)\) \(\chi_{23104}(219,\cdot)\) \(\chi_{23104}(243,\cdot)\) \(\chi_{23104}(355,\cdot)\) \(\chi_{23104}(363,\cdot)\) \(\chi_{23104}(371,\cdot)\) \(\chi_{23104}(395,\cdot)\) \(\chi_{23104}(451,\cdot)\) \(\chi_{23104}(459,\cdot)\) \(\chi_{23104}(507,\cdot)\) \(\chi_{23104}(515,\cdot)\) \(\chi_{23104}(523,\cdot)\) \(\chi_{23104}(547,\cdot)\) \(\chi_{23104}(603,\cdot)\) \(\chi_{23104}(611,\cdot)\) \(\chi_{23104}(659,\cdot)\) \(\chi_{23104}(667,\cdot)\) \(\chi_{23104}(675,\cdot)\) \(\chi_{23104}(699,\cdot)\) \(\chi_{23104}(755,\cdot)\) \(\chi_{23104}(763,\cdot)\) \(\chi_{23104}(811,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2736})$
Fixed field: Number field defined by a degree 2736 polynomial (not computed)

Values on generators

\((5055,12997,14081)\) → \((-1,e\left(\frac{7}{16}\right),e\left(\frac{281}{342}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 23104 }(6931, a) \) \(1\)\(1\)\(e\left(\frac{55}{2736}\right)\)\(e\left(\frac{157}{2736}\right)\)\(e\left(\frac{55}{456}\right)\)\(e\left(\frac{55}{1368}\right)\)\(e\left(\frac{451}{912}\right)\)\(e\left(\frac{2411}{2736}\right)\)\(e\left(\frac{53}{684}\right)\)\(e\left(\frac{643}{684}\right)\)\(e\left(\frac{385}{2736}\right)\)\(e\left(\frac{799}{1368}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 23104 }(6931,a) \;\) at \(\;a = \) e.g. 2