sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23104, base_ring=CyclotomicField(2736))
M = H._module
chi = DirichletCharacter(H, M([1368,1197,2248]))
pari:[g,chi] = znchar(Mod(6931,23104))
| Modulus: | \(23104\) | |
| Conductor: | \(23104\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2736\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{23104}(3,\cdot)\)
\(\chi_{23104}(51,\cdot)\)
\(\chi_{23104}(59,\cdot)\)
\(\chi_{23104}(67,\cdot)\)
\(\chi_{23104}(91,\cdot)\)
\(\chi_{23104}(147,\cdot)\)
\(\chi_{23104}(155,\cdot)\)
\(\chi_{23104}(203,\cdot)\)
\(\chi_{23104}(211,\cdot)\)
\(\chi_{23104}(219,\cdot)\)
\(\chi_{23104}(243,\cdot)\)
\(\chi_{23104}(355,\cdot)\)
\(\chi_{23104}(363,\cdot)\)
\(\chi_{23104}(371,\cdot)\)
\(\chi_{23104}(395,\cdot)\)
\(\chi_{23104}(451,\cdot)\)
\(\chi_{23104}(459,\cdot)\)
\(\chi_{23104}(507,\cdot)\)
\(\chi_{23104}(515,\cdot)\)
\(\chi_{23104}(523,\cdot)\)
\(\chi_{23104}(547,\cdot)\)
\(\chi_{23104}(603,\cdot)\)
\(\chi_{23104}(611,\cdot)\)
\(\chi_{23104}(659,\cdot)\)
\(\chi_{23104}(667,\cdot)\)
\(\chi_{23104}(675,\cdot)\)
\(\chi_{23104}(699,\cdot)\)
\(\chi_{23104}(755,\cdot)\)
\(\chi_{23104}(763,\cdot)\)
\(\chi_{23104}(811,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5055,12997,14081)\) → \((-1,e\left(\frac{7}{16}\right),e\left(\frac{281}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
| \( \chi_{ 23104 }(6931, a) \) |
\(1\) | \(1\) | \(e\left(\frac{55}{2736}\right)\) | \(e\left(\frac{157}{2736}\right)\) | \(e\left(\frac{55}{456}\right)\) | \(e\left(\frac{55}{1368}\right)\) | \(e\left(\frac{451}{912}\right)\) | \(e\left(\frac{2411}{2736}\right)\) | \(e\left(\frac{53}{684}\right)\) | \(e\left(\frac{643}{684}\right)\) | \(e\left(\frac{385}{2736}\right)\) | \(e\left(\frac{799}{1368}\right)\) |
sage:chi.jacobi_sum(n)