sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(231, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,20,24]))
pari:[g,chi] = znchar(Mod(179,231))
Modulus: | \(231\) | |
Conductor: | \(231\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{231}(53,\cdot)\)
\(\chi_{231}(86,\cdot)\)
\(\chi_{231}(137,\cdot)\)
\(\chi_{231}(158,\cdot)\)
\(\chi_{231}(170,\cdot)\)
\(\chi_{231}(179,\cdot)\)
\(\chi_{231}(191,\cdot)\)
\(\chi_{231}(212,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((155,199,211)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 231 }(179, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)