sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(223, base_ring=CyclotomicField(74))
M = H._module
chi = DirichletCharacter(H, M([30]))
pari:[g,chi] = znchar(Mod(15,223))
Modulus: | \(223\) | |
Conductor: | \(223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(37\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{223}(2,\cdot)\)
\(\chi_{223}(4,\cdot)\)
\(\chi_{223}(7,\cdot)\)
\(\chi_{223}(8,\cdot)\)
\(\chi_{223}(14,\cdot)\)
\(\chi_{223}(15,\cdot)\)
\(\chi_{223}(16,\cdot)\)
\(\chi_{223}(17,\cdot)\)
\(\chi_{223}(28,\cdot)\)
\(\chi_{223}(30,\cdot)\)
\(\chi_{223}(32,\cdot)\)
\(\chi_{223}(33,\cdot)\)
\(\chi_{223}(34,\cdot)\)
\(\chi_{223}(41,\cdot)\)
\(\chi_{223}(49,\cdot)\)
\(\chi_{223}(56,\cdot)\)
\(\chi_{223}(60,\cdot)\)
\(\chi_{223}(64,\cdot)\)
\(\chi_{223}(66,\cdot)\)
\(\chi_{223}(68,\cdot)\)
\(\chi_{223}(82,\cdot)\)
\(\chi_{223}(98,\cdot)\)
\(\chi_{223}(105,\cdot)\)
\(\chi_{223}(112,\cdot)\)
\(\chi_{223}(115,\cdot)\)
\(\chi_{223}(119,\cdot)\)
\(\chi_{223}(120,\cdot)\)
\(\chi_{223}(128,\cdot)\)
\(\chi_{223}(132,\cdot)\)
\(\chi_{223}(136,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{15}{37}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 223 }(15, a) \) |
\(1\) | \(1\) | \(e\left(\frac{36}{37}\right)\) | \(e\left(\frac{15}{37}\right)\) | \(e\left(\frac{35}{37}\right)\) | \(e\left(\frac{3}{37}\right)\) | \(e\left(\frac{14}{37}\right)\) | \(e\left(\frac{5}{37}\right)\) | \(e\left(\frac{34}{37}\right)\) | \(e\left(\frac{30}{37}\right)\) | \(e\left(\frac{2}{37}\right)\) | \(e\left(\frac{14}{37}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)