Properties

Label 223.15
Modulus $223$
Conductor $223$
Order $37$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(223, base_ring=CyclotomicField(74)) M = H._module chi = DirichletCharacter(H, M([30]))
 
Copy content pari:[g,chi] = znchar(Mod(15,223))
 

Basic properties

Modulus: \(223\)
Conductor: \(223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(37\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 223.e

\(\chi_{223}(2,\cdot)\) \(\chi_{223}(4,\cdot)\) \(\chi_{223}(7,\cdot)\) \(\chi_{223}(8,\cdot)\) \(\chi_{223}(14,\cdot)\) \(\chi_{223}(15,\cdot)\) \(\chi_{223}(16,\cdot)\) \(\chi_{223}(17,\cdot)\) \(\chi_{223}(28,\cdot)\) \(\chi_{223}(30,\cdot)\) \(\chi_{223}(32,\cdot)\) \(\chi_{223}(33,\cdot)\) \(\chi_{223}(34,\cdot)\) \(\chi_{223}(41,\cdot)\) \(\chi_{223}(49,\cdot)\) \(\chi_{223}(56,\cdot)\) \(\chi_{223}(60,\cdot)\) \(\chi_{223}(64,\cdot)\) \(\chi_{223}(66,\cdot)\) \(\chi_{223}(68,\cdot)\) \(\chi_{223}(82,\cdot)\) \(\chi_{223}(98,\cdot)\) \(\chi_{223}(105,\cdot)\) \(\chi_{223}(112,\cdot)\) \(\chi_{223}(115,\cdot)\) \(\chi_{223}(119,\cdot)\) \(\chi_{223}(120,\cdot)\) \(\chi_{223}(128,\cdot)\) \(\chi_{223}(132,\cdot)\) \(\chi_{223}(136,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{37})$
Fixed field: Number field defined by a degree 37 polynomial

Values on generators

\(3\) → \(e\left(\frac{15}{37}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 223 }(15, a) \) \(1\)\(1\)\(e\left(\frac{36}{37}\right)\)\(e\left(\frac{15}{37}\right)\)\(e\left(\frac{35}{37}\right)\)\(e\left(\frac{3}{37}\right)\)\(e\left(\frac{14}{37}\right)\)\(e\left(\frac{5}{37}\right)\)\(e\left(\frac{34}{37}\right)\)\(e\left(\frac{30}{37}\right)\)\(e\left(\frac{2}{37}\right)\)\(e\left(\frac{14}{37}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 223 }(15,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 223 }(15,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 223 }(15,·),\chi_{ 223 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 223 }(15,·)) \;\) at \(\; a,b = \) e.g. 1,2