Properties

Label 221.128
Modulus $221$
Conductor $221$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(221, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([14,3]))
 
Copy content pari:[g,chi] = znchar(Mod(128,221))
 

Basic properties

Modulus: \(221\)
Conductor: \(221\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 221.bc

\(\chi_{221}(2,\cdot)\) \(\chi_{221}(15,\cdot)\) \(\chi_{221}(19,\cdot)\) \(\chi_{221}(32,\cdot)\) \(\chi_{221}(59,\cdot)\) \(\chi_{221}(76,\cdot)\) \(\chi_{221}(111,\cdot)\) \(\chi_{221}(128,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.221912159494888970129181006529110805060115683312073.1

Values on generators

\((171,105)\) → \((e\left(\frac{7}{12}\right),e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 221 }(128, a) \) \(-1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{19}{24}\right)\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{23}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 221 }(128,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 221 }(128,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 221 }(128,·),\chi_{ 221 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 221 }(128,·)) \;\) at \(\; a,b = \) e.g. 1,2